skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 1, 2026

Title: Wearable multi-sensory haptic devices
Haptic devices enable communication via touch, augmenting visual and auditory displays, or by offering alternative channels of communication when vision and hearing are unavailable. Because of the different types of haptic stimuli that are perceivable by users — vibration, skin stretch, pressure and temperature, among others — devices can be designed to communicate complex information by delivering multiple types of haptic stimuli simultaneously. These multi-sensory haptic devices are often designed to be wearable and have been developed for use in a wide variety of applications, including communication, entertainment and rehabilitation. Multi-sensory haptic devices present unique challenges to designers because human perceptual acuity can vary widely depending on the wearable location on the body and/or the heterogeneity in human perceptual performance, particularly when multiple cues are presented simultaneously. Additionally, packaging haptic systems in a wearable form factor presents its own engineering challenges such as cue masking, device mounting and actuator capabilities, among others. Thus, in this Review, we discuss the state-of-the-art and specific obstacles present in the field to produce multi-sensory devices that enhance the human capacity for haptic interaction and information transmission.  more » « less
Award ID(s):
2144809
PAR ID:
10608529
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Springer Nature
Date Published:
Journal Name:
Nature Reviews Bioengineering
Volume:
3
Issue:
4
ISSN:
2731-6092
Page Range / eLocation ID:
288 to 302
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Wearable haptic devices transmit information via touch receptors in the skin, yet devices located on parts of the body with high densities of receptors, such as fingertips and hands, impede interactions. Other locations that are well‐suited for wearables, such as the wrists and arms, suffer from lower perceptual sensitivity. The emergence of textile‐based wearable devices introduces new techniques of fabrication that can be leveraged to address these constraints and enable new modes of haptic interactions. This article formalizes the concept of “multiscale” interaction, an untapped paradigm for haptic wearables, enabling enhanced delivery of information via textile‐based haptic modules. In this approach, users choose the depth and detail of their haptic experiences by varying their interaction mode. Flexible prototyping methods enable multiscale haptic bands that provide both body‐scale interactions (on the forearm) and hand‐scale interactions (on the fingers and palm). A series of experiments assess participants’ ability to identify pressure states and spatial locations delivered by these bands across these interaction scales. A final experiment demonstrates the encoding of three‐bit information into prototypical multiscale interactions, showcasing the paradigm's efficacy. This research lays the groundwork for versatile haptic communication and wearable design, offering users the ability to select interaction modes for receiving information. 
    more » « less
  2. Wearable fingertip haptic interfaces provide tac- tile stimuli on the fingerpads by applying skin pressure, linear and rotational shear, and vibration. Designing and fabricating a compact, multi-degree-of-freedom, and forceful fingertip haptic interface is challenging due to trade-offs among miniatur- ization, multifunctionality, and manufacturability. Downsizing electromagnetic actuators that produce high torques is infea- sible, and integrating multiple actuators, links, joints, and transmission elements increases device size and weight. 3-D printing enables rapid manufacturing of complex devices with minimal assembly in large batches. However, it requires a careful arrangement of material properties, geometry, scale, and printer capabilities. Here we present a fully 3-D printed, soft, monolithic fingertip haptic device based on an origami pattern known as the “waterbomb” base that embeds foldable vacuum actuation and produces 4-DoF of motion on the fingerpad with tunable haptic forces (up to 1.3 N shear and 7 N normal) and torque (up to 25 N-mm). Including the thimble mounting, the compact device is 40 mm long and 20 mm wide. This demonstrates the efficacy of origami design and soft material 3D printing for designing and rapidly fabricating miniature yet complex wearable mechanisms with force output appropriate for haptic interaction. 
    more » « less
  3. Despite the ubiquitous presence of tactile actuators (tactors) in mobile devices, there is a continuing need for more advanced tactors that can cover the entire frequency range of human tactile perception. Broadband tactors can increase information transmission and enrich sensory experience. The engineering challenges are multifold in that the ideal tactors should exhibit an effective bandwidth of at least 300 Hz, small form factor, robustness, power efficiency and low cost. For wearable applications, there are the additional challenges of ease of mounting and maintaining adequate skin contact during body movements. We propose an approach to interleave narrowband tactile stimuli to achieve broadband effects, taking advantage of the limited spatial resolution of the skin on the torso and limbs. Three psychophysical experiments were conducted to assess the validity of this approach. Participants performed pairwise discriminations of two broadband stimuli delivered using one or two tactors. The broadband stimuli consisted of one mid-frequency and one high-frequency component delivered through one tactor by mixing the two components, or through two tactors (one component per tactor). The first two experiments revealed extraneous cues such as localization and mutual masking of mid- and high-frequency components that were subsequently eliminated in the third experiment. Results from 12 participants confirmed that performance on pairwise comparisons was below the discrimination threshold, confirming that broadband haptic effects can be achieved through narrowband tactors placed within the skin’s two-point limen. 
    more » « less
  4. null (Ed.)
    When individuals interact with the environment, sensory feedback is a critical aspect of the experience. Individuals using prosthesis often have difficulty controlling their device, partly due to a lack of sensory information. Transcutaneous nerve stimulation has the potential to elicit focal haptic sensation when controlled electrical current was delivered to a pair of electrodes in proximity to the nerve. The objective of this preliminary study was to evaluate how different elicited focal haptic sensation were altered, when multiple concurrent electrical stimuli were delivered to different portions of the median and ulnar nerve bundles. The delay between the individual stimulation during concurrent stimuli was also varied to identify if this parameter could alter the resulting sensation region. Lastly, the stability/repeatability of the perceived sensation during concurrent stimuli was determined. Our preliminary results showed that the spatial distribution of the haptic sensation was largely a direct summation/merge of the sensation regions from the individual nerve stimulation when comparing the regions to that of the concurrent double stimulation. Our results also showed that merged sensation region was not sensitive to different time delays the two concurrent stimuli. Lastly, the sensation regions remained stable and showed repeatable sensation in the hand even with 20-60 minutes between repeated stimulations. 
    more » « less
  5. Resonant frequency skin stretch uses cyclic lateral skin stretches matching the skin’s resonant frequency to create highly noticeable stimuli, signifying a new approach for wearable haptic stimulation. Four experiments were performed to explore biomechanical and perceptual aspects of resonant frequency skin stretch. In the first experiment, effective skin resonant frequencies were quantified at the forearm, shank, and foot. In the second experiment, perceived haptic stimuli were characterized for skin stretch actuations across a spectrum of frequencies. In the third experiment, perceived haptic stimuli were characterized for different actuator masses. In the fourth experiment, haptic classification ability was determined as subjects differentiated haptic stimulation cues while sitting, walking, and jogging. Results showed that subjects perceived stimulations at, above, and below the skin’s resonant frequency differently: stimulations lower than the skin resonant frequency felt like distinct impacts, stimulations at the skin resonant frequency felt like cyclic skin stretches, and stimulations higher than the skin resonant frequency felt like standard vibrations. Subjects successfully classified stimulations while sitting, walking, and jogging, perceived haptic stimuli was affected by actuator mass, and classification accuracy decreased with increasing speed, especially for stimulations at the shank. This work could facilitate more widespread use of wearable skin stretch. Potential applications include gaming, medical simulation, and surgical augmentation, and for training to reduce injury risk or improve sports performance. 
    more » « less