skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: High-Fidelity, Multiqubit Generalized Measurements with Dynamic Circuits
Generalized measurements, also called positive operator-valued measures (POVMs), can offer advantages over projective measurements in various quantum information tasks. Here, we realize a generalized measurement of one and two superconducting qubits with high fidelity and in a single experimental setting. To do so, we propose a hybrid method, the “Naimark-terminated binary tree,” based on a hybridization of Naimark’s dilation and binary tree techniques that leverages emerging hardware capabilities for midcircuit measurements and feed-forward control. Furthermore, we showcase a highly effective use of approximate compiling to enhance POVM fidelity in noisy conditions. We argue that our hybrid method scales better toward larger system sizes than its constituent methods and demonstrate its advantage by performing detector tomography of symmetric, informationally complete POVM (SIC POVM). Detector fidelity is further improved through a composite error-mitigation strategy that incorporates twirling and a newly devised conditional readout error mitigation. Looking forward, we expect improvements in approximate compilation and hardware noise for dynamic circuits to enable generalized measurements of larger multiqubit POVMs on superconducting qubits.  more » « less
Award ID(s):
2326767 2312755 2137642 1936118
PAR ID:
10608549
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
American Physical Society
Date Published:
Journal Name:
PRX Quantum
Volume:
5
Issue:
3
ISSN:
2691-3399
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Contemporary quantum computers encode and process quantum information in binary qubits (d = 2). How- ever, many architectures include higher energy levels that are left as unused computational resources. We demonstrate a superconducting ququart (d = 4) processor and combine quantum optimal control with efficient gate decompositions to implement high-fidelity ququart gates. We distinguish between viewing the ququart as a generalized four-level qubit and an encoded pair of qubits, and characterize the resulting gates in each case. In randomized benchmarking experiments we observe gate fidelities 95% and identify coherence as the primary limiting factor. Our results validate ququarts as a viable tool for quantum information processing. 
    more » « less
  2. null (Ed.)
    One of the key challenges in current Noisy Intermediate-Scale Quantum (NISQ) computers is to control a quantum system with high-fidelity quantum gates. There are many reasons a quantum gate can go wrong -- for superconducting transmon qubits in particular, one major source of gate error is the unwanted crosstalk between neighboring qubits due to a phenomenon called frequency crowding. We motivate a systematic approach for understanding and mitigating the crosstalk noise when executing near-term quantum programs on superconducting NISQ computers. We present a general software solution to alleviate frequency crowding by systematically tuning qubit frequencies according to input programs, trading parallelism for higher gate fidelity when necessary. The net result is that our work dramatically improves the crosstalk resilience of tunable-qubit, fixed-coupler hardware, matching or surpassing other more complex architectural designs such as tunable-coupler systems. On NISQ benchmarks, we improve worst-case program success rate by 13.3x on average, compared to existing traditional serialization strategies. 
    more » « less
  3. Constant coefficient multipliers are widely used in digital signal processing and machine learning architectures. Researchers have proposed HBU-CCM (hybrid binary-unary constant coefficient multiplier), which is an approximate method that outperforms conventional binary and FloPoCo-KCM (table-based real multiplier) methods in terms of hardware cost at the expense of accuracy due to aliasing issues. SimBU (self-similarity-based hybrid binary-unary) is another method that was recently proposed to implement general nonlinear functions using self-similarities leading to few hardware resources. In this work, we use a simplified version of the SimBU algorithm to address the aliasing issues of HBU-CCM and improve accuracy. We also implement a convolution kernel for a Gaussian blurring filter to evaluate our method and compare it to previous works. Our method outperforms conventional binary and FloPoCo-KCM methods in terms of hardware cost with desired accuracy and with no aliasing error as opposed to HBU-CCM. 
    more » « less
  4. Unary computing is a relatively new method for implementing non-linear functions using few hardware resources compared to binary computing. In its original form, unary computing provides no trade-off between accuracy and hardware cost. In this work, we propose a novel self-similarity-based method to optimize the previous hybrid binary-unary method and provide it with the trade-off between accuracy and hardware cost by introducing controlled levels of approximation. Given a target maximum error, our method breaks a function into sub-functions and tries to find the minimum set of unique sub-functions that can derive all the other ones through trivial bit-wise transformations. We compare our method to previous works such as HBU (hybrid binary-unary) and FloPoCo-PPA (piece-wise polynomial approximation) on a number of non-linear functions including Log, Exp, Sigmoid, GELU, Sin, and Sqr, which are used in neural networks and image processing applications. Without any loss of accuracy, our method can improve the area-delay-product hardware cost of HBU on average by 7% at 8-bit, 20% at 10-bit, and 35% at 12-bit resolutions. Given the approximation of the least significant bit, our method reduces the hardware cost of HBU on average by 21% at 8-bit, 49% at 10-bit, and 60% at 12-bit resolutions, and using the same error budget as given to FloPoCo-PPA, it reduces the hardware cost of FloPoCo-PPA on average by 79% at 8-bit, 58% at 10-bit, and 9% at 12-bit resolutions. We finally show the benefits of our method by implementing a 10-bit homomorphic filter, which is used in image processing applications. Our method can implement the filter with no quality loss at lower hardware cost than what the previous approximate and exact methods can achieve. 
    more » « less
  5. Discrete and continuous frames can be considered as positive operator-valued measures (POVMs) that have integral representations using rank-one operators. However, not every POVM has an integral representation. One goal of this paper is to examine the POVMs that have finite-rank integral representations. More precisely, we present a necessary and sufficient condition under which a positive operator-valued measure $$F: \Omega \to B(H)$$ has an integral representation of the form $$F(E) =\sum_{k=1}^{m} \int_{E}\, G_{k}(\omega)\otimes G_{k}(\omega) d\mu(\omega)$$ for some weakly measurable maps $$G_{k} \ (1\leq k\leq m) $$ from a measurable space $$\Omega$$ to a Hilbert space $$\mathcal{H}$$ and some positive measure $$\mu$$ on $$\Omega$$. Similar characterizations are also obtained for projection-valued measures. As special consequences of our characterization we settle negatively a problem of Ehler and Okoudjou about probability frame representations of probability POVMs, and prove that an integral representable probability POVM can be dilated to a integral representable projection-valued measure if and only if the corresponding measure is purely atomic. 
    more » « less