7T magnetic resonance imaging (MRI) has the potential to drive our understanding of human brain function through new contrast and enhanced resolution. Whole brain segmentation is a key neuroimaging technique that allows for region-by-region analysis of the brain. Segmentation is also an important preliminary step that provides spatial and volumetric information for running other neuroimaging pipelines. Spatially localized atlas network tiles (SLANT) is a popular 3D convolutional neural network (CNN) tool that breaks the whole brain segmentation task into localized sub-tasks. Each sub-task involves a specific spatial location handled by an independent 3D convolutional network to provide high resolution whole brain segmentation results. SLANT has been widely used to generate whole brain segmentations from structural scans acquired on 3T MRI. However, the use of SLANT for whole brain segmentation from structural 7T MRI scans has not been successful due to the inhomogeneous image contrast usually seen across the brain in 7T MRI. For instance, we demonstrate the mean percent difference of SLANT label volumes between a 3T scan-rescan is approximately 1.73%, whereas its 3T-7T scan-rescan counterpart has higher differences around 15.13%. Our approach to address this problem is to register the whole brain segmentation performed on 3T MRI to 7T MRI and use this information to finetune SLANT for structural 7T MRI. With the finetuned SLANT pipeline, we observe a lower mean relative difference in the label volumes of ~8.43% acquired from structural 7T MRI data. Dice similarity coefficient between SLANT segmentation on the 3T MRI scan and the after finetuning SLANT segmentation on the 7T MRI increased from 0.79 to 0.83 with p<0.01. These results suggest finetuning of SLANT is a viable solution for improving whole brain segmentation on high resolution 7T structural imaging.
more »
« less
This content will become publicly available on April 14, 2026
Explainsegnet: Interpretable Segmentation for Alzheimer's Diagnosis
This analysis utilizes a residual 3D convolutional neural network (equipped with 4 attention layers). The core contributions of our work are twofold: firstly, we have innovatively integrated clinical expertise into the initialization of the attention layer’s weights through whole-brain segmentation technique; secondly, we have employed various state-of-the-art model interpretation techniques. These techniques effectively annotate influential brain regions and demonstrate promising results within neuroimaging analysis, as reflected in the key metrics and outcomes. Our findings underscore the potential of deep learning in neuroimaging, especially highlighting the critical role of comprehensive brain segmentation in enhancing diagnostic accuracy.
more »
« less
- Award ID(s):
- 2238700
- PAR ID:
- 10608605
- Publisher / Repository:
- IEEE
- Date Published:
- ISBN:
- 979-8-3315-2052-6
- Page Range / eLocation ID:
- 01 to 05
- Subject(s) / Keyword(s):
- 3D Structural MRI, Whole-Brain Segmentation, CNN, Model Interpretation
- Format(s):
- Medium: X
- Location:
- Houston, TX, USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Regional morphological analysis represents a crucial step in most neuroimaging studies. Results from brain segmentation techniques are intrinsically prone to certain degrees of variability, mainly as results of suboptimal segmentation. To reduce this inherent variability, the errors are often identified through visual inspection and then corrected (semi)manually. Identification and correction of incorrect segmentation could be very expensive for large-scale studies. While identification of the incorrect results can be done relatively fast even with manual inspection, the correction step is extremely time-consuming, as it requires training staff to perform laborious manual corrections. Here we frame the correction phase of this problem as a missing data problem. Instead of manually adjusting the segmentation outputs, our computational approach aims to derive accurate morphological measures by machine learning imputation. Data imputation techniques may be used to replace missing or incorrect region average values with carefully chosen imputed values, all of which are computed based on other available multivariate informa- tion. We examined our approach of correcting segmentation outputs on a cohort of 970 subjects, which were undergone an extensive, time-consuming, manual post-segmentation correction. A random forest imputation technique recovered the gold standard results with a significant accuracy (r = 0.93, p < 0.0001; when 30% of the segmentations were considered incorrect in a non-random fashion). The random forest technique proved to be most effective for big data studies (N > 250).more » « less
-
The burgeoning field of brain health research increasingly leverages artificial intelligence (AI) to analyze and interpret neuroimaging data. Medical foundation models have shown promise of superior performance with better sample efficiency. This work introduces a novel approach towards creating 3-dimensional (3D) medical foundation models for multimodal neuroimage segmentation through self-supervised training. Our approach involves a novel two-stage pretraining approach using vision transformers. The first stage encodes anatomical structures in generally healthy brains from the large-scale unlabeled neuroimage dataset of multimodal brain magnetic resonance imaging (MRI) images from 41,400 participants. This stage of pertaining focuses on identifying key features such as shapes and sizes of different brain structures. The second pretraining stage identifies disease-specific attributes, such as geometric shapes of tumors and lesions and spatial placements within the brain. This dual-phase methodology significantly reduces the extensive data requirements usually necessary for AI model training in neuroimage segmentation with the flexibility to adapt to various imaging modalities. We rigorously evaluate our model, BrainSegFounder, using the Brain Tumor Segmentation (BraTS) challenge and Anatomical Tracings of Lesions After Stroke v2.0 (ATLAS v2.0) datasets. BrainSegFounder demonstrates a significant performance gain, surpassing the achievements of the previous winning solutions using fully supervised learning. Our findings underscore the impact of scaling up both the model complexity and the volume of unlabeled training data derived from generally healthy brains. Both of these factors enhance the accuracy and predictive capabilities of the model in neuroimage segmentation tasks. Our pretrained models and code are at https://github.com/lab-smile/BrainSegFounder.more » « less
-
With rapid progress in high-throughput genotyping and neuroimaging, researches of complex brain disorders, such as Alzheimer’s Disease (AD), have gained significant attention in recent years. Many prediction models have been studied to relate neuroimaging measures to cognitive status over the progressions when these disease develops. Missing data is one of the biggest challenge in accurate cognitive score prediction of subjects in longitudinal neuroimaging studies. To tackle this problem, in this paper we propose a novel formulation to learn an enriched representation for imaging biomarkers that can simultaneously capture both the information conveyed by baseline neuroimaging records and that by progressive variations of varied counts of available follow-up records over time. While the numbers of the brain scans of the participants vary, the learned biomarker representation for every participant is a fixed-length vector, which enable us to use traditional learning models to study AD developments. Our new objective is formulated to maximize the ratio of the summations of a number of L1-norm distances for improved robustness, which, though, is difficult to efficiently solve in general. Thus we derive a new efficient iterative solution algorithm and rigorously prove its convergence. We have performed extensive experiments on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset. A performance gain has been achieved to predict four different cognitive scores, when we compare the original baseline representations against the learned representations with enrichments. These promising empirical results have demonstrated improved performances of our new method that validate its effectiveness.more » « less
-
A brain tumor is an abnormal growth in the brain that disrupts its functionality and poses a significant threat to human life by damaging neurons. Early detection and classification of brain tumors are crucial to prevent complications and maintain good health. Recent advancements in deep learning techniques have shown immense potential in image classification and segmentation for tumor identification and classification. In this study, we present a platform, BrainView, for detection, and segmentation of brain tumors from Magnetic Resonance Images (MRI) using deep learning. We utilized EfficientNetB7 pre-trained model to design our proposed DeepBrainNet classification model for analyzing brain MRI images to classify its type. We also proposed a EfficinetNetB7 based image segmentation model, called the EffB7-UNet, for tumor localization. Experimental results show significantly high classification (99.96%) and segmentation (92.734%) accuracies for our proposed models. Finally, we discuss the contours of a cloud application for BrainView using Flask and Flutter to help researchers and clinicians use our machine learning models online for research purposes.more » « less
An official website of the United States government
