We describe how power operations descend through homotopy limit spectral sequences. We apply this to describe how norms appear in the -equivariant Adams spectral sequence, to compute norms on of the equivariant -local sphere, and to compute power operations for the -local sphere. An appendix contains material on equivariant Bousfield localizations which may be of independent interest.
more »
« less
This content will become publicly available on April 4, 2026
A motivic analogue of the $K(1)$-local sphere spectrum
We identify the motivicKGL/2-local sphere as the fiber of\psi^{3}-1on(2,\eta)-completed HermitianK-theory, over any base scheme containing1/2. This is a motivic analogue of the classical resolution of theK(1)-local sphere, and extends to a description of theKGL/2-localization of an arbitrary motivic spectrum. Our proof relies on a novel conservativity argument that should be of broad utility in stable motivic homotopy theory.
more »
« less
- PAR ID:
- 10608818
- Publisher / Repository:
- JEMS
- Date Published:
- Journal Name:
- Journal of the European Mathematical Society
- ISSN:
- 1435-9855
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We study the Hilbert scheme\mathrm{Hilb}_{d}(\mathbf{A}^{\infty})from an\mathbf{A}^{1}-homotopical viewpoint and obtain applications to algebraic K-theory. We show that the Hilbert scheme\mathrm{Hilb}_{d}(\mathbf{A}^{\infty})is\mathbf{A}^{1}-equivalent to the Grassmannian of(d-1)-planes in\mathbf{A}^{\infty}. We then describe the\mathbf{A}^{1}-homotopy type of\mathrm{Hilb}_{d}(\mathbf{A}^{n})in a certain range, fornlarge compared tod. For example, we compute the integral cohomology of\mathrm{Hilb}_{d}(\mathbf{A}^{n})(\mathbf{C})in a range. We also deduce that the forgetful map\mathcal{FF}\mathrm{lat}\to\mathcal{V}\mathrm{ect}from the moduli stack of finite locally free schemes to that of finite locally free sheaves is an\mathbf{A}^{1}-equivalence after group completion. This implies that the moduli stack\mathcal{FF}\mathrm{lat}, viewed as a presheaf with framed transfers, is a model for the effective motivic spectrum\mathrm{kgl}representing algebraic K-theory. Combining our techniques with the recent work of Bachmann, we obtain Hilbert scheme models for the\mathrm{kgl}-homology of smooth proper schemes over a perfect field.more » « less
-
We develop a higher semiadditive version of Grothendieck-Witt theory. We then apply the theory in the case of a finite field to study the higher semiadditive structure of the -local sphere at the prime , in particular realizing the non- -adic rational element as a “semiadditive cardinality.” As a further application, we compute and clarify certain power operations in .more » « less
-
We formulate and prove a Conner–Floyd isomorphism for the algebraic K-theory of arbitrary qcqs derived schemes. To that end, we study a stable -category of non- -invariant motivic spectra, which turns out to be equivalent to the -category of fundamental motivic spectra satisfying elementary blowup excision, previously introduced by the first and third authors. We prove that this -category satisfies -homotopy invariance and weighted -homotopy invariance, which we use in place of -homotopy invariance to obtain analogues of several key results from -homotopy theory. These allow us in particular to define a universal oriented motivic -ring spectrum . We then prove that the algebraic K-theory of a qcqs derived scheme can be recovered from its -cohomology via a Conner–Floyd isomorphism\[ \]where is the Lazard ring and . Finally, we prove a Snaith theorem for the periodized version of .more » « less
-
Abstract Thek-dimensional functional order property ($$\operatorname {FOP}_k$$ ) is a combinatorial property of a$$(k+1)$$ -partitioned formula. This notion arose in work of Terry and Wolf [59, 60], which identified$$\operatorname {NFOP}_2$$ as a ternary analogue of stability in the context of two finitary combinatorial problems related to hypergraph regularity and arithmetic regularity. In this paper we show$$\operatorname {NFOP}_k$$ has equally strong implications in model-theoretic classification theory, where its behavior as a$$(k+1)$$ -ary version of stability is in close analogy to the behavior ofk-dependence as a$$(k+1)$$ -ary version of$$\operatorname {NIP}$$ . Our results include several new characterizations of$$\operatorname {NFOP}_k$$ , including a characterization in terms of collapsing indiscernibles, combinatorial recharacterizations, and a characterization in terms of type-counting when$$k=2$$ . As a corollary of our collapsing theorem, we show$$\operatorname {NFOP}_k$$ is closed under Boolean combinations, and that$$\operatorname {FOP}_k$$ can always be witnessed by a formula where all but one variable have length 1. When$$k=2$$ , we prove a composition lemma analogous to that of Chernikov and Hempel from the setting of 2-dependence. Using this, we provide a new class of algebraic examples of$$\operatorname {NFOP}_2$$ theories. Specifically, we show that ifTis the theory of an infinite dimensional vector space over a fieldK, equipped with a bilinear form satisfying certain properties, thenTis$$\operatorname {NFOP}_2$$ if and only ifKis stable. Along the way we provide a corrected and reorganized proof of Granger’s quantifier elimination and completeness results for these theories.more » « less
An official website of the United States government
