skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2026

Title: Review of Disruptive Technologies in 3D Bioprinting
Abstract Purpose of ReviewThe purpose of this review is to share insights from recognized experts in 3D biopriniting on the recent advances in these technologies discussed during a recent workshop held in conjunction with the 2024 ISS National Laboratory Research and Development Conference (ISSRDC). We seek to answer how microgravity can be used as a disruptor to make further advances not possible through conventional means. Recent FindingsThis review will cover current efforts underway to use microgravity for 3D bioprinting. For instance multi-levitation biofabrication technology funded under the EU PULSE project is currently being used to create cardiovascular 3D in vitro models to better mimic cardiac and vascular physiology compared to organoids. These types of models could be expanded to other organ systems and disease models to use the environment of microgravity to unlock new signaling pathways to cure disease. SummaryThe major takeaway from this review is that microgravity will unlock new opportunities for 3D bioprinting that were simply not possible using conventional means. We provide forward looking answers to what microgravity will inspire from advanced biomaterials to new disease models to even creating a knowledge hub for 3D bioprinting to launch new platforms at record speeds.  more » « less
Award ID(s):
2317757
PAR ID:
10608848
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Springer Nature
Date Published:
Journal Name:
Current Stem Cell Reports
Volume:
11
Issue:
1
ISSN:
2198-7866
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract 3D bioprinting has enabled the fabrication of tissue‐mimetic constructs with freeform designs that include living cells. In the development of new bioprinting techniques, the controlled use of diffusion has become an emerging strategy to tailor the properties and geometry of printed constructs. Specifically, the diffusion of molecules with specialized functions, including crosslinkers, catalysts, growth factors, or viscosity‐modulating agents, across the interface of printed constructs will directly affect material properties such as microstructure, stiffness, and biochemistry, all of which can impact cell phenotype. For example, diffusion‐induced gelation is employed to generate constructs with multiple materials, dynamic mechanical properties, and perfusable geometries. In general, these diffusion‐based bioprinting strategies can be categorized into those based on inward diffusion (i.e., into the printed ink from the surrounding air, solution, or support bath), outward diffusion (i.e., from the printed ink into the surroundings), or diffusion within the printed construct (i.e., from one zone to another). This review provides an overview of recent advances in diffusion‐based bioprinting strategies, discusses emerging methods to characterize and predict diffusion in bioprinting, and highlights promising next steps in applying diffusion‐based strategies to overcome current limitations in biofabrication. 
    more » « less
  2. Abstract Over the past decade, three-dimensional (3D) bioprinting has made significant progress, transforming into a key innovation in tissue engineering. Despite the early strides, critical challenges remain in 3D bioprinting that must be addressed to accelerate clinical translation. In particular, there is still a long way to go before functionally-mature, clinically-relevant tissue equivalents are developed. Current limitations range from the sub-optimal bioink properties and degree of biomimicry of bioprintable architectures, to the lack of stem/progenitor cells for massive cell expansion, and fundamental knowledge regardingin vitroculturing conditions. In addition to these problems, the absence of guidelines and well-regulated international standards is creating uncertainty among the biofabrication community stakeholders regarding the reliable and scalable production processes. This review aims at exploring the latest developments in 3D bioprinting approaches, including various additive manufacturing techniques and their applications. A thorough discussion of common bioprinting techniques and recent progresses are compiled along with notable recent studies. Later we discuss the current challenges in clinical application of 3D bioprinting and the major bottlenecks in the commercialization of 3D bioprinted tissue equivalents, including the longevity of bioprinted organs, meeting biomechanical requirements, and the often underrated ethical and legal aspects. Amidst the progress of regulatory efforts for regenerative medicine, we also present an overview of the current regulatory concerns which should be taken into account to translate bioprinted tissues into clinical practice. At last, this review emphasizes future directions in 3D bioprinting that includes the transformative ideas such as bioprinting in microgravity and the integration of artificial intelligence. The study concludes with a discussion on the need for collaborative efforts in resolving the technical and regulatory constraints to improve the quality, reliability, and reproducibility of bioprinted tissue equivalents to ultimately accomplish their successful clinical implementation. 
    more » « less
  3. Abstract Bioprinting is an additive manufacturing technique that combines living cells, biomaterials, and biological molecules to develop biologically functional constructs. Three-dimensional (3D) bioprinting is commonly used as anin vitromodeling system and is a more accurate representation ofin vivoconditions in comparison to two-dimensional cell culture. Although 3D bioprinting has been utilized in various tissue engineering and clinical applications, it only takes into consideration the initial state of the printed scaffold or object. Four-dimensional (4D) bioprinting has emerged in recent years to incorporate the additional dimension of time within the printed 3D scaffolds. During the 4D bioprinting process, an external stimulus is exposed to the printed construct, which ultimately changes its shape or functionality. By studying how the structures and the embedded cells respond to various stimuli, researchers can gain a deeper understanding of the functionality of native tissues. This review paper will focus on the biomaterial breakthroughs in the newly advancing field of 4D bioprinting and their applications in tissue engineering and regeneration. In addition, the use of smart biomaterials and 4D printing mechanisms for tissue engineering applications is discussed to demonstrate potential insights for novel 4D bioprinting applications. To address the current challenges with this technology, we will conclude with future perspectives involving the incorporation of biological scaffolds and self-assembling nanomaterials in bioprinted tissue constructs. 
    more » « less
  4. Abstract Three-dimensional (3D) bioprinting seeks to unlock the rapid generation of complex tissue constructs, but long-standing challenges with efficient in vitro microvascularization must be solved before this can become a reality. Microvasculature is particularly challenging to biofabricate due to the presence of a hollow lumen, a hierarchically branched network topology, and a complex signaling milieu. All of these characteristics are required for proper microvascular—and, thus, tissue—function. While several techniques have been developed to address distinct portions of this microvascularization challenge, no single approach is capable of simultaneously recreating all three microvascular characteristics. In this review, we present a three-part framework that proposes integration of existing techniques to generate mature microvascular constructs. First, extrusion-based 3D bioprinting creates a mesoscale foundation of hollow, endothelialized channels. Second, biochemical and biophysical cues induce endothelial sprouting to create a capillary-mimetic network. Third, the construct is conditioned to enhance network maturity. Across all three of these stages, we highlight the potential for extrusion-based bioprinting to become a central technique for engineering hierarchical microvasculature. We envision that the successful biofabrication of functionally engineered microvasculature will address a critical need in tissue engineering, and propel further advances in regenerative medicine and ex vivo human tissue modeling. 
    more » « less
  5. Abstract IntroductionCoaxial 3D bioprinting has advanced the formation of tissue constructs that recapitulate key architectures and biophysical parameters for in-vitro disease modeling and tissue-engineered therapies. Controlling gene expression within these structures is critical for modulating cell signaling and probing cell behavior. However, current transfection strategies are limited in spatiotemporal control because dense 3D scaffolds hinder diffusion of traditional vectors. To address this, we developed a coaxial extrusion 3D bioprinting technique using ultrasound-responsive gene delivery bioinks. These bioink materials incorporate echogenic microbubble gene delivery particles that upon ultrasound exposure can sonoporate cells within the construct, facilitating controllable transfection. MethodsPhospholipid-coated gas-core microbubbles were electrostatically coupled to reporter transgene plasmid payloads and incorporated into cell-laden alginate bioinks at varying particle concentrations. These bioinks were loaded into the coaxial nozzle core for extrusion bioprinting with CaCl2crosslinker in the outer sheath. Resulting bioprints were exposed to 2.25 MHz focused ultrasound and evaluated for microbubble activation and subsequent DNA delivery and transgene expression. ResultsCoaxial printing parameters were established that preserved the stability of ultrasound-responsive gene delivery particles for at least 48 h in bioprinted alginate filaments while maintaining high cell viability. Successful sonoporation of embedded cells resulted in DNA delivery and robust ultrasound-controlled transgene expression. The number of transfected cells was modulated by varying the number of focused ultrasound pulses applied. The size region over which DNA was delivered was modulated by varying the concentration of microbubbles in the printed filaments. ConclusionsOur results present a successful coaxial 3D bioprinting technique designed to facilitate ultrasound-controlled gene delivery. This platform enables remote, spatiotemporally-defined genetic manipulation in coaxially bioprinted tissue constructs with important applications for disease modeling and regenerative medicine. 
    more » « less