skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: No-go theorem for environment-assisted invariance in non-unitary dynamics
Abstract We elucidate the requirements for quantum operations that achieve environment-assisted invariance (envariance), a symmetry of entanglement. While envariance has traditionally been studied within the framework of local unitary operations, we extend the analysis to consider non-unitary local operations. First, we investigate the conditions imposed on operators acting on pure bipartite entanglement to attain envariance. We show that the local operations must take a direct-sum form in their Kraus operator representations, establishing decoherence-free subspaces. Furthermore, we prove that this also holds for the multipartite scenario. As an immediate consequence, we demonstrate that environment-assisted shortcuts to adiabaticity cannot be achieved through non-unitary operations. In addition, we show that the static condition of the eternal black hole in AdS/CFT is violated when the CFTs are coupled to the external baths.  more » « less
Award ID(s):
2328774 2425180 2019786
PAR ID:
10609013
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
New Journal of Physics
Volume:
27
Issue:
6
ISSN:
1367-2630
Format(s):
Medium: X Size: Article No. 064509
Size(s):
Article No. 064509
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    A bstract We study the problem of revealing the entanglement wedge using simple operations. We ask what operation a semiclassical observer can do to bring the entanglement wedge into causal contact with the boundary, via backreaction. In a generic perturbative class of states, we propose a unitary operation in the causal wedge whose backreaction brings all of the previously causally inaccessible ‘peninsula’ into causal contact with the boundary. This class of cases includes entanglement wedges associated to boundary sub-regions that are unions of disjoint spherical caps, and the protocol works to first order in the size of the peninsula. The unitary is closely related to the so-called Connes Cocycle flow, which is a unitary that is both well-defined in QFT and localised to a sub-region. Our construction requires a generalization of the work by Ceyhan & Faulkner to regions which are unions of disconnected spherical caps. We discuss this generalization in the appendix. We argue that this cocycle should be thought of as naturally generalizing the non-local coupling introduced in the work of Gao, Jafferis & Wall. 
    more » « less
  2. We study free fermion systems under adaptive quantum dynamics consisting of unitary gates and projective measurements followed by corrective unitary operations. We further introduce a classical flag for each site, allowing for an active or inactive status which determines whether or not the unitary gates are allowed to apply. In this dynamics, the individual quantum trajectories exhibit a measurement-induced entanglement transition from critical to area-law scaling above a critical measurement rate, similar to previously studied models of free fermions under continuous monitoring. Furthermore, we find that the corrective unitary operations can steer the system into a state characterized by charge-density-wave order. Consequently, an additional phase transition occurs, which can be observed at both the level of the quantum trajectory and the quantum channel. We establish that the entanglement transition and the steering transition are fundamentally distinct. The latter transition belongs to the parity-conserving (PC) universality class, arising from the interplay between the inherent fermionic parity and classical labelling. We demonstrate both the entanglement and the steering transitions via efficient numerical simulations of free fermion systems, which confirm the PC universality class of the latter. 
    more » « less
  3. Abstract Entanglement is a striking feature of quantum mechanics, and it has a key property called unextendibility. In this paper, we present a framework for quantifying and investigating the unextendibility of general bipartite quantum states. First, we define the unextendible entanglement, a family of entanglement measures based on the concept of a state-dependent set of free states. The intuition behind these measures is that the more entangled a bipartite state is, the less entangled each of its individual systems is with a third party. Second, we demonstrate that the unextendible entanglement is an entanglement monotone under two-extendible quantum operations, including local operations and one-way classical communication as a special case. Normalization and faithfulness are two other desirable properties of unextendible entanglement, which we establish here. We further show that the unextendible entanglement provides efficiently computable benchmarks for the rate of exact entanglement or secret key distillation, as well as the overhead of probabilistic entanglement or secret key distillation. 
    more » « less
  4. Multipartite entangled states are an essential resource for sensing, quantum error correction, and cryptography. Color centers in solids are one of the leading platforms for quantum networking due to the availability of a nuclear spin memory that can be entangled with the optically active electronic spin through dynamical decoupling sequences. Creating electron-nuclear entangled states in these systems is a difficult task as the always-on hyperfine interactions prohibit complete isolation of the target dynamics from the unwanted spin bath. While this emergent cross-talk can be alleviated by prolonging the entanglement generation, the gate durations quickly exceed coherence times. Here we show how to prepare high-quality GHZ M -like states with minimal cross-talk. We introduce the M -tangling power of an evolution operator, which allows us to verify genuine all-way correlations. Using experimentally measured hyperfine parameters of an NV center spin in diamond coupled to carbon-13 lattice spins, we show how to use sequential or single-shot entangling operations to prepare GHZ M -like states of up to M = 10 qubits within time constraints that saturate bounds on M -way correlations. We study the entanglement of mixed electron-nuclear states and develop a non-unitary M -tangling power which additionally captures correlations arising from all unwanted nuclear spins. We further derive a non-unitary M -tangling power which incorporates the impact of electronic dephasing errors on the M -way correlations. Finally, we inspect the performance of our protocols in the presence of experimentally reported pulse errors, finding that XY decoupling sequences can lead to high-fidelity GHZ state preparation. 
    more » « less
  5. We study the problem of implementing arbitrary permutations of qubits under interaction constraints in quantum systems that allow for arbitrarily fast local operations and classical communication (LOCC). In particular, we show examples of speedups over swap-based and more general unitary routing methods by distributing entanglement and using LOCC to perform quantum teleportation. We further describe an example of an interaction graph for which teleportation gives a logarithmic speedup in the worst-case routing time over swap-based routing. We also study limits on the speedup afforded by quantum teleportation—showing an O ( N log N ) upper bound on the separation in routing time for any interaction graph—and give tighter bounds for some common classes of graphs. Published by the American Physical Society2024 
    more » « less