skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Seeing the entanglement wedge
A bstract We study the problem of revealing the entanglement wedge using simple operations. We ask what operation a semiclassical observer can do to bring the entanglement wedge into causal contact with the boundary, via backreaction. In a generic perturbative class of states, we propose a unitary operation in the causal wedge whose backreaction brings all of the previously causally inaccessible ‘peninsula’ into causal contact with the boundary. This class of cases includes entanglement wedges associated to boundary sub-regions that are unions of disjoint spherical caps, and the protocol works to first order in the size of the peninsula. The unitary is closely related to the so-called Connes Cocycle flow, which is a unitary that is both well-defined in QFT and localised to a sub-region. Our construction requires a generalization of the work by Ceyhan & Faulkner to regions which are unions of disconnected spherical caps. We discuss this generalization in the appendix. We argue that this cocycle should be thought of as naturally generalizing the non-local coupling introduced in the work of Gao, Jafferis & Wall.  more » « less
Award ID(s):
2014215 1911298
PAR ID:
10284974
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2021
Issue:
6
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    A bstract We derive the holographic entanglement entropy functional for a generic gravitational theory whose action contains terms up to cubic order in the Riemann tensor, and in any dimension. This is the simplest case for which the so-called splitting problem manifests itself, and we explicitly show that the two common splittings present in the literature — minimal and non-minimal — produce different functionals. We apply our results to the particular examples of a boundary disk and a boundary strip in a state dual to 4- dimensional Poincaré AdS in Einsteinian Cubic Gravity, obtaining the bulk entanglement surface for both functionals and finding that causal wedge inclusion is respected for both splittings and a wide range of values of the cubic coupling. 
    more » « less
  2. The intensely studied measurement-induced entanglement phase transition has become a hallmark of nonunitary quantum many-body dynamics. Usually, such a transition only appears at the level of each individual quantum trajectory, and is absent for the density matrix averaged over measurement outcomes. In this work, we introduce a class of adaptive random circuit models with feedback that exhibit transitions in both settings. After each measurement, a unitary operation is either applied or not depending on the measurement outcome, which steers the averaged density matrix towards a unique state above a certain measurement threshold. Interestingly, the transition for the density matrix and the entanglement transition in the individual quantum trajectory in general happen at different critical measurement rates. We demonstrate that the former transition belongs to the parity-conserving universality class by explicitly mapping to a classical branching-annihilating random-walk process. 
    more » « less
  3. We study the entanglement contour and partial entanglement entropy (PEE) in quantum field theories in 3 and higher dimensions. The entanglement entropy is evaluated from a certain limit of the PEE with a geometric regulator. In the context of the entanglement contour, we classify the geometric regulators, study their difference from the UV regulators. Furthermore, for spherical regions in conformal field theories (CFTs) we find the exact relation between the UV and geometric cutoff, which clarifies some subtle points in the previous literature. We clarify a subtle point of the additive linear combination (ALC) proposal for PEE in higher dimensions. The subset entanglement entropies in the ALC proposal should all be evaluated as a limit of the PEE while excluding a fixed class of local-short-distance correlation. Unlike the 2-dimensional configurations, naively plugging the entanglement entropy calculated with a UV cutoff will spoil the validity of the ALC proposal. We derive the entanglement contour function for spherical regions, annuli and spherical shells in the vacuum state of general-dimensional CFTs on a hyperplane. 
    more » « less
  4. null (Ed.)
    A bstract We describe the construction of traversable wormholes with multiple mouths in four spacetime dimensions and discuss associated quantum entanglement. Our wormholes may be traversed between any pair of mouths. In particular, in the three-mouth case they have fundamental group F 2 (the free group on two generators). By contrast, connecting three regions A, B, C in pairs ( AB , BC , and AC ) using three separate wormholes would give fundamental group F 3 . Our solutions are asymptotically flat up to the presence of possible magnetic fluxes or cosmic strings that extend to infinity. The construction begins with a two-mouth traversable wormhole supported by backreaction from quantum fields. Inserting a sufficiently small black hole into its throat preserves traversability between the original two mouths. This black hole is taken to be the mouth of another wormhole connecting the original throat to a new distant region of spacetime. Making the new wormhole traversable in a manner similar to the original two-mouth wormhole provides the desired causal connections. From a dual field theory point of view, when AdS asymptotics are added to our construction, multiparty entanglement may play an important role in the traversability of the resulting wormhole. 
    more » « less
  5. A bstract We consider a Hayden & Preskill like setup for both maximally chaotic and sub-maximally chaotic quantum field theories. We act on the vacuum with an operator in a Rindler like wedge R and transfer a small subregion I of R to the other wedge. The chaotic scrambling dynamics of the QFT Rindler time evolution reveals the information in the other wedge. The holographic dual of this process involves a particle excitation falling into the bulk and crossing into the entanglement wedge of the complement to r = R\I . With the goal of studying the locality of the emergent holographic theory we compute various quantum information measures on the boundary that tell us when the particle has entered this entanglement wedge. In a maximally chaotic theory, these measures indicate a sharp transition where the particle enters the wedge exactly when the insertion is null separated from the quantum extremal surface for r . For sub-maximally chaotic theories, we find a smoothed crossover at a delayed time given in terms of the smaller Lyapunov exponent and dependent on the time-smearing scale of the probe excitation. The information quantities that we consider include the full vacuum modular energy R\I as well as the fidelity between the state with the particle and the state without. Along the way, we find a new explicit formula for the modular Hamiltonian of two intervals in an arbitrary 1+1 dimensional CFT to leading order in the small cross ratio limit. We also give an explicit calculation of the Regge limit of the modular flowed chaos correlator and find examples which do not saturate the modular chaos bound. Finally, we discuss the extent to which our results reveal properties of the target of the probe excitation as a “stringy quantum extremal surface” or simply quantify the probe itself thus giving a new approach to studying the notion of longitudinal string spreading. 
    more » « less