skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 16, 2026

Title: Atomically Precise Nanoclusters as Co‐Catalysts for Light‐Activated Microswimmer Motility
Abstract Microswimmers are self‐propelled particles that navigate fluid environments, offering significant potential for applications in environmental pollutant decomposition, biosensing, and targeted drug delivery. Their performance relies on engineered catalytic surfaces. Gold nanoclusters (AuNCs), with atomically precise structures, tunable optical properties, and high surface area‐to‐volume ratio, provide a new optimal catalyst for enhancing microswimmer propulsion. Unlike bulk gold or nanoparticles, AuNCs may deliver tunable photocatalytic activity and increased catalytic specificity, making them ideal co‐catalysts for hybrid microswimmers. For the first time, this study combines AuNCs with TiO2/Cr2O3Janus microswimmers, combining the unique properties of both materials. This hybrid system capitalizes on the tuned optical properties of AuNCs and their role as co‐catalysts with TiO2, driving enhanced photocatalytic performance under ultraviolet (UV) excitation. Using motion analysis, it is shown that the AuNC‐microswimmers exhibit significantly greater propulsion and mean squared displacement (MSD) as compared to controls. These findings suggest that the integration of nanoclusters with semiconductor materials enables state of the art, light‐switchable microswimmers. These AuNC‐microswimmer systems may thus offer new opportunities for environmental catalysis and other applications, providing precise control over catalytic and motile behaviors at the microscale.  more » « less
Award ID(s):
2425226
PAR ID:
10609210
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Small
ISSN:
1613-6810
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Herein, we report on the synthesis of ultrasmall Pd nanoclusters (∼2 nm) protected by L‐cysteine [HOCOCH(NH2)CH2SH] ligands (Pdn(L‐Cys)m) and supported on the surfaces of CeO2, TiO2, Fe3O4, and ZnO nanoparticles for CO catalytic oxidation. The Pdn(L‐Cys)mnanoclusters supported on the reducible metal oxides CeO2, TiO2and Fe3O4exhibit a remarkable catalytic activity towards CO oxidation, significantly higher than the reported Pd nanoparticle catalysts. The high catalytic activity of the ligand‐protected clusters Pdn(L‐Cys)mis observed on the three reducible oxides where 100 % CO conversion occurs at 93–110 °C. The high activity is attributed to the ligand‐protected Pd nanoclusters where the L‐cysteine ligands aid in achieving monodispersity of the Pd clusters by limiting the cluster size to the active sub‐2‐nm region and decreasing the tendency of the clusters for agglomeration. In the case of the ceria support, a complete removal of the L‐cysteine ligands results in connected agglomerated Pd clusters which are less reactive than the ligand‐protected clusters. However, for the TiO2and Fe3O4supports, complete removal of the ligands from the Pdn(L‐Cys)mclusters leads to a slight decrease in activity where the T100%CO conversion occurs at 99 °C and 107 °C, respectively. The high porosity of the TiO2and Fe3O4supports appears to aid in efficient encapsulation of the bare Pdnnanoclusters within the mesoporous pores of the support. 
    more » « less
  2. Abstract 2D transition‐metal‐dichalcogenide materials, such as molybdenum disulfide (MoS2) have received immense interest owing to their remarkable structure‐endowed electronic, catalytic, and mechanical properties for applications in optoelectronics, energy storage, and wearable devices. However, 2D materials have been rarely explored in the field of micro/nanomachines, motors, and robots. Here, MoS2 with anatase TiO2 is successfully integrated into an original one‐side‐open hollow micromachine, which demonstrates increased light absorption of TiO2‐based micromachines to the visible region and the first observed motion acceleration in response to ionic media. Both experimentation and theoretical analysis suggest the unique type‐II bandgap alignment of MoS2/TiO2 heterojunction that accounts for the observed unique locomotion owing to a competing propulsion mechanism. Furthermore, by leveraging the chemical properties of MoS2/TiO2, the micromachines achieve sunlight‐powered water disinfection with 99.999% Escherichia coli lysed in an hour. This research suggests abundant opportunities offered by 2D materials in the creation of a new class of micro/nanomachines and robots. 
    more » « less
  3. null (Ed.)
    Ultrasmall metal nanoparticles (below 2.2 nm core diameter) start to show discrete electronic energy levels due to strong quantum confinement effects and thus behave much like molecules. The size and structure dependent quantization induces a plethora of new phenomena, including multi-band optical absorption, enhanced luminescence, single-electron magnetism, and catalytic reactivity. The exploration of such new properties is largely built on the success in unveiling the crystallographic structures of atomically precise nanoclusters (typically protected by ligands, formulated as M n L m q , where M = metal, L = Ligand, and q = charge). Correlation between the atomic structures of nanoclusters and their properties has further enabled atomic-precision engineering toward materials design. In this frontier article, we illustrate several aspects of the precise engineering of gold nanoclusters, such as the single-atom size augmenting, single-atom dislodging and doping, precise surface modification, and single-electron control for magnetism. Such precise engineering involves the nanocluster's geometric structure, surface chemistry, and electronic properties, and future endeavors will lead to new materials design rules for structure–function correlations and largely boost the applications of metal nanoclusters in optics, catalysis, magnetism, and other fields. Following the illustrations of atomic-precision engineering, we have also put forth some perspectives. We hope this frontier article will stimulate research interest in atomic-level engineering of nanoclusters. 
    more » « less
  4. In this study, photocatalytic properties and in vitro cytotoxicity of 29 TiO 2 -based multi-component nanomaterials ( i.e. , hybrids of more than two composition types of nanoparticles) were evaluated using a combination of the experimental testing and supervised machine learning modeling. TiO 2 -based multi-component nanomaterials with metal clusters of silver, and their mixtures with gold, palladium, and platinum were successfully synthesized. Two activities, photocatalytic activity and cytotoxicity, were studied. A novel cheminformatic approach was developed and applied for the computational representation of the photocatalytic activity and cytotoxicity effect. In this approach, features of investigated TiO 2 -based hybrid nanomaterials were reflected by a series of novel additive descriptors for hybrid and hybrid nanostructures (denoted as “hybrid nanosctructure descriptors”). These descriptors are based on quantum chemical calculations and the Smoluchowski equation. The obtained experimental data and calculated hybrid-nanostructure descriptors were used to develop novel predictive Quantitative Structure–Activity Relationship computational models (called “nano-QSAR mix ”). The proposed modeling approach is an initial step in the understanding of the relationships between physicochemical properties of hybrid nanoparticles, their toxicity, and photochemical activity under UV-vis irradiation. Acquired knowledge supports the safe-by-design approaches relevant to the development of efficient hybrid nanomaterials with reduced hazardous effects. 
    more » « less
  5. Planar magnetic microswimmers bear great potential for in vivo biomedical applications as they can be mass‐produced at minimal costs using standard photolithography techniques. Therefore, it is central to understand how to control their motion. This study examines the propulsion of planar V‐shaped microswimmers in an aqueous solution powered by a conically rotating magnetic field and compares the experimental results with theory. Propulsion is investigated upon altering the cone angle of the driving field. It is shown that a V‐shaped microswimmer magnetized along its symmetry axis exhibits unidirectional in‐sync propulsion with a constant (frequency‐independent) velocity in a limited band of actuation frequencies. It is also demonstrated that the motion of individual and multiple in‐plane magnetized planar microswimmers in a conically rotating field can be efficiently controlled. 
    more » « less