skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2026

Title: A multi-site data sample for analyzing the online commercial sex ecosystem
Online sex advertisements (sex ads) have been linked to many U.S. sex trafficking cases. However, since the closure of the dominant website, Backpage.com (Backpage), many competing sites have emerged that are hosted in countries where U.S. law enforcement organizations have no jurisdiction. Although the online ecosystem has changed significantly, very little research uses data from sites other than Backpage, and even less uses data from multiple sites. This paper presents an anonymized dataset derived from the text and image artifacts of more than 10 million sex ads. By making this dataset publicly available, we aim to reduce barriers to entry for researchers interested in conducting data-driven counter-trafficking research. The dataset can be used to test hypotheses related to sex ads and intersite connectivity, understand the posting processes employed by prominent sites in the current online sex ad ecosystem, and develop multidisciplinary approaches for estimating ad legitimacy. Progress in any of these areas can result in potentially lifesaving interventions for ST victims.  more » « less
Award ID(s):
2240299
PAR ID:
10609300
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
https://www.nature.com/articles/s41597-025-04442-w
Date Published:
Journal Name:
Scientific Data
Volume:
12
Issue:
1
ISSN:
2052-4463
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Monetizing websites and web apps through online advertising is widespread in the web ecosystem, creating a billion-dollar market. This has led to the emergence of a vast network of tertiary ad providers and ad syndication to facilitate this growing market. Nowadays, the online advertising ecosystem forces publishers to integrate ads from these third-party domains. On the one hand, this raises several privacy and security concerns that are actively being studied in recent years. On the other hand, the ability of today's browsers to load dynamic web pages with complex animations and Javascript has also transformed online advertising. This can have a significant impact on webpage performance. The latter is a critical metric for optimization since it ultimately impacts user satisfaction. Unfortunately, there are limited literature studies on understanding the performance impacts of online advertising which we argue is as important as privacy and security. In this paper, we apply an in-depth and first-of-a-kind performance evaluation of web ads. Unlike prior efforts that rely primarily on adblockers, we perform a fine-grained analysis on the web browser's page loading process to demystify the performance cost of web ads. We aim to characterize the cost by every component of an ad, so the publisher, ad syndicate, and advertiser can improve the ad's performance with detailed guidance. For this purpose, we develop a tool, adPerf, for the Chrome browser that classifies page loading workloads into ad-related and main-content at the granularity of browser activities. Our evaluations show that online advertising entails more than 15% of browser page loading workload and approximately 88% of that is spent on JavaScript. On smartphones, this additional cost of ads is 7% lower since mobile pages include fewer and well-optimized ads. We also track the sources and delivery chain of web ads and analyze performance considering the origin of the ad contents. We observe that 2 of the well-known third-party ad domains contribute to 35% of the ads performance cost and surprisingly, top news websites implicitly include unknown third-party ads which in some cases build up to more than 37% of the ads performance cost. 
    more » « less
  2. Problem definition: Approximately 11,000 alleged illicit massage businesses (IMBs) exist across the United States hidden in plain sight among legitimate businesses. These illicit businesses frequently exploit workers, many of whom are victims of human trafficking, forced or coerced to provide commercial sex. Academic/practical relevance: Although IMB review boards like Rubmaps.ch can provide first-hand information to identify IMBs, these sites are likely to be closed by law enforcement. Open websites like Yelp.com provide more accessible and detailed information about a larger set of massage businesses. Reviews from these sites can be screened for risk factors of trafficking. Methodology: We develop a natural language processing approach to detect online customer reviews that indicate a massage business is likely engaged in human trafficking. We label data sets of Yelp reviews using knowledge of known IMBs. We develop a lexicon of key words/phrases related to human trafficking and commercial sex acts. We then build two classification models based on this lexicon. We also train two classification models using embeddings from the bidirectional encoder representations from transformers (BERT) model and the Doc2Vec model. Results: We evaluate the performance of these classification models and various ensemble models. The lexicon-based models achieve high precision, whereas the embedding-based models have relatively high recall. The ensemble models provide a compromise and achieve the best performance on the out-of-sample test. Our results verify the usefulness of ensemble methods for building robust models to detect risk factors of human trafficking in reviews on open websites like Yelp. Managerial implications: The proposed models can save countless hours in IMB investigations by automatically sorting through large quantities of data to flag potential illicit activity, eliminating the need for manual screening of these reviews by law enforcement and other stakeholders. Funding: This work was supported by the National Science Foundation [Grant 1936331]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2023.1196 . 
    more » « less
  3. Advertisements have become commonplace on modern websites. While ads are typically designed for visual consumption, it is unclear how they affect blind users who interact with the ads using a screen reader. Existing research studies on non-visual web interaction predominantly focus on general web browsing; the specific impact of extraneous ad content on blind users’ experience remains largely unexplored. To fill this gap, we conducted an interview study with 18 blind participants; we found that blind users are often deceived by ads that contextually blend in with the surrounding web page content. While ad blockers can address this problem via a blanket filtering operation, many websites are increasingly denying access if an ad blocker is active. Moreover, ad blockers often do not filter out internal ads injected by the websites themselves. Therefore, we devised an algorithm to automatically identify contextually deceptive ads on a web page. Specifically, we built a detection model that leverages a multi-modal combination of handcrafted and automatically extracted features to determine if a particular ad is contextually deceptive. Evaluations of the model on a representative test dataset and ‘in-the-wild’ random websites yielded F1 scores of 0.86 and 0.88, respectively. 
    more » « less
  4. Although advertising is a popular strategy for mobile app monetization, it is often desirable to block ads in order to improve usability, performance, privacy, and security. In this paper, we propose NoMoAds to block ads served by any app on a mobile device. NoMoAds leverages the network interface as a universal vantage point: it can intercept, inspect, and block outgoing packets from all apps on a mobile device. NoMoAds extracts features from packet headers and/or payload to train machine learning classifiers for detecting ad requests. To evaluate NoMoAds, we collect and label a new dataset using both EasyList and manually created rules. We show that NoMoAds is effective: it achieves an F-score of up to 97.8% and performs well when deployed in the wild. Furthermore, NoMoAds is able to detect mobile ads that are missed by EasyList (more than one-third of ads in our dataset). We also show that NoMoAds is efficient: it performs ad classification on a per-packet basis in real-time. To the best of our knowledge, NoMoAds is the first mobile ad-blocker to effectively and efficiently block ads served across all apps using a machine learning approach. 
    more » « less
  5. null (Ed.)
    The rapid growth of online advertising has fueled the growth of ad-blocking software, such as new ad-blocking and privacy-oriented browsers or browser extensions. In response, both ad publishers and ad networks are constantly trying to pursue new strategies to keep up their revenues. To this end, ad networks have started to leverage the Web Push technology enabled by modern web browsers. As web push notifications (WPNs) are relatively new, their role in ad delivery has not yet been studied in depth. Furthermore, it is unclear to what extent WPN ads are being abused for malvertising (i.e., to deliver malicious ads). In this paper, we aim to fill this gap. Specifically, we propose a system called PushAdMiner that is dedicated to (1) automatically registering for and collecting a large number of web-based push notifications from publisher websites, (2) finding WPN-based ads among these notifications, and (3) discovering malicious WPN-based ad campaigns. Using PushAdMiner, we collected and analyzed 21,541 WPN messages by visiting thousands of different websites. Among these, our system identified 572 WPN ad campaigns, for a total of 5,143 WPN-based ads that were pushed by a variety of ad networks. Furthermore, we found that 51% of all WPN ads we collected are malicious, and that traditional ad-blockers and URL filters were mostly unable to block them, thus leaving a significant abuse vector unchecked. 
    more » « less