skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 1, 2026

Title: Modeling Solidification Microstructure in an Inoculated Aluminum 6061 Alloy Processed with Gas Metal Arc Directed Energy Deposition
Abstract The solidification microstructures of plain and inoculated 6061 aluminum builds manufactured with gas metal arc-directed energy deposition were studied with a combination of models and experiments. Electron back-scatter diffraction (EBSD) showed that the plain 6061 build had large, columnar grains with intergranular solidification cracking, while the inoculated build had a near-equiaxed, fine grain microstructure with no solidification cracks. By combining EBSD and energy dispersive spectrometry, the inoculated build has been shown to have exhibited globular growth while the non-inoculated build displayed a dendritic microstructure. A combination of heat transfer and modified grain morphology models were employed to predict the solidification morphology of the 6061 builds, which closely matched experimental results. A modification is proposed to the criterion marking the transition from globular to dendritic growth that better matches experimental results in this work. The results of this study are expected to provide improved methods to predict solidification microstructure for the development of new materials and processing parameters for additive manufacturing.  more » « less
Award ID(s):
2052819
PAR ID:
10609305
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Springer Nature
Date Published:
Journal Name:
JOM
Volume:
77
Issue:
3
ISSN:
1047-4838
Page Range / eLocation ID:
1423 to 1437
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The weldability of plain and inoculated 6061 aluminum processed with gas metal arc directed energy deposition (GMA-DED) was evaluated and compared to wrought 6061. Autogenous gas tungsten arc welds of varying heat inputs were made, and the degree of solidification cracking was evaluated. The degree of cracking in the inoculated 6061 material was lower than that of plain GMA-DED and wrought 6061. Microstructure characterization revealed that the welds on the inoculated 6061 produced fine, equiaxed grains, whereas the plain 6061 showed coarse, columnar grains. A combination of heat transfer and solidification models were employed to predict the solidification morphology of the 6061 welds, which closely matched the experimental results in all cases. A model was developed to understand the effect of grain morphology on solidification cracking, and it was found that equiaxed grains shifted the critical liquid film range for cracking to lower solid fractions where thermal stresses are the lowest. However, cracking can be caused if sufficient external stresses are applied when the critical liquid film thickness is present during solidification of the equiaxed grain structure. This work provides insight into the role grain size and morphology control can have in suppressing solidification cracking of other aluminum alloys. 
    more » « less
  2. Metal additive manufacturing has become integral to the modern aerospace and defense industry. Technologies such as powder bed fusion and direct energy deposition have reshaped these sectors. However, challenges like anisotropy and process-related defects still prevent the direct use of printed parts without post-processing. Electron beam powder bed fusion (EB-PBF) is well known for allowing builds at elevated temperatures and eliminating the need for stress relief. However, EB-PBF parts also experience epitaxial growth in the build direction, which causes anisotropy. This research explores two scanning strategies with spot melting techniques— stochastic and single directional—to fabricate IN718 parts using EB-PBF. After fabrication, the samples were analyzed using EBSD to evaluate grain formation in all directions. The findings suggest that point-based melting, guided by these strategies, can affect the microstructure in the build direction. This advancement offers the potential for tailoring controlled parts in future applications. 
    more » « less
  3. Additive manufacturing allows fabrication of custom-shaped thermoelectric materials while minimizing waste, reducing processing steps, and maximizing integration compared to conventional methods. Establishing the process-structure-property relationship of laser additive manufactured thermoelectric materials facilitates enhanced process control and thermoelectric performance. This research focuses on laser processing of bismuth telluride (Bi 2 Te 3 ), a well-established thermoelectric material for low temperature applications. Single melt tracks under various parameters (laser power, scan speed and number of scans) were processed on Bi 2 Te 3 powder compacts. A detailed analysis of the transition in the melting mode, grain growth, balling formation, and elemental composition is provided. Rapid melting and solidification of Bi 2 Te 3 resulted in fine-grained microstructure with preferential grain growth along the direction of the temperature gradient. Experimental results were corroborated with simulations for melt pool dimensions as well as grain morphology transitions resulting from the relationship between temperature gradient and solidification rate. Samples processed at 25 W, 350 mm/s with 5 scans resulted in minimized balling and porosity, along with columnar grains having a high density of dislocations. 
    more » « less
  4. The current work studies the correlations between microstructure and retained austenite (RA) transformation, in a single-quenched and partitioned (Q&P) 1180 steel microstructure, through in situ tensile tests combined with electron backscatter diffraction (EBSD) analysis. This allows the study of RA stability across a limited range of morphological characteristics to be studied in the absence of confounding factors introduced by varying the entire steel microstructure. Among the microstructural attributes of interest, RA grain aspect ratio is found to have the largest influence on transformation rate, where globular-shaped grains transform more slowly than those with a more lenticular shape. Furthermore, by tracking individual grains during deformation, it is apparent that larger grains transformed more slowly than smaller grains; a purely statistical study of grain size vs strain might conclude that smaller grains are more stable, but in reality, the smaller grains transform faster and are simply statistically replaced by partially transformed larger grains. These conclusions are in contrast to relationships that might be inferred from previous studies where the entire steel microstructure was varied, along with the morphology of the RA. 
    more » « less
  5. Abstract Controlling microstructure in fusion-based metal additive manufacturing (AM) remains a significant challenge due to the many parameters that directly impact solidification condition. Multiprincipal element alloys (MPEAs), also known as high entropy alloys, offer a vast compositional space to design for microstructural engineering due to their chemical complexity and exceptional properties. Here, we use the FeMnCoCr system as a model platform for exploring alloy design in MPEAs for AM. By exploiting the decreasing stability of the face-centered cubic phase with increasing Mn content, we achieve notable grain refinement and breakdown of epitaxial columnar grain growth. We employ a multifaceted approach encompassing thermodynamic modeling, operando synchrotron X-ray diffraction, multiscale microstructural characterization, and mechanical testing to gain insight into the solidification physics and its ramifications on the resulting microstructure of FeMnCoCr MPEAs. This work aims toward tailoring desirable grain sizes and morphology through targeted manipulation of phase stability, thereby advancing microstructure control in AM applications. 
    more » « less