This study addresses the limitations of cross weld tensile testing (CWTT) in quantifying local mechanical properties across microstructural and compositional gradients in dissimilar– and matching–filler metal welds. A digital image correlation (DIC) methodology was validated for application in CWTT by direct comparison of stress-strain curves generated using conventional and virtual DIC extensometers in tensile testing of homogeneous steel samples. DIC-instrumented CWTT of dissimilar weld metal Alloy 625 filler metal on F65 steel demonstrated capability in quantifying the local yield strength, strain-hardening kinetics, and strain at failure in the base metal, heat-affected zone (HAZ), fusion boundary (FB) region, and weld metal in dissimilar and matching filler metal welds. It was shown that the high strain-hardening capacity in Alloy 625 weld metal led to base metal failure in CWTT despite the lower Alloy 625 weld metal yield strength. It was also shown that DIC-instrumented CWTT can be used for determining weld metal undermatching and overmatching conditions in compositionally matching- and dissimilar-metal welds. Furthermore, by quantifying local strain distribution (both elastic and plastic) in the HAZ, FB region, and weld metal, DIC-instrumented CWTT provides an additional method for evaluating hydrogen-assisted cracking susceptibility in dissimilar-metal welds.
more »
« less
Stress Relaxation Cracking (SRC) Susceptibility Comparison in UNS S34709 and UNS S34751 Stainless Steel Welds for Petrochemical Piping Applications
Abstract UNS S34751 and UNS S34709 austenitic stainless-steel alloys contain thermomechanical properties required for use in chemical processing pipe applications with 900–1200°F (482–665°C) operating temperatures. UNS S34751 alloy has demonstrated improved sensitization resistance compared to UNS S34709, a precursor for polythionic acid stress corrosion cracking (PA-SCC), due to lower carbon (C) content (0.01 wt.%) and higher niobium-to-carbon (Nb/C) ratio with lower overall niobium content. The addition of nitrogen (N) in UNS S34751 alloy provides similar thermomechanical properties compared to UNS 34709. Additionally, stress relaxation cracking (SRC) susceptibility in UNS 34709 welds has been documented thoroughly in literature and industry, which poses a problem for long term service life, while UNS S34751 welds have potential for improved SRC resistance without the need for post weld heat treatment (PWHT). In this paper, a literature review of S34751 is explored, and testing matrix of experimental SRC tests using a Gleeble 3500® thermomechanical simulator is developed for S34751 gas tungsten arc welded (GTAW) pipe samples in comparison to S34709 welds. Additionally, initial thermodynamic and kinetic CALPHAD calculations have been completed to analyze potential detrimental phases in S34751 in comparison to S34709, e.g., z-phase. SRC testing has been mostly completed in S34709 welds made with W34710 (E347-16) and S16880 (E16.8.2-15) weld filler, respectively, and SRC comparisons to S34751 are in progress. Current results show higher resistance to SRC in S34751 HAZ and FZ than S34709 FZ and W34710 FZ at 800°C. In the following year, a full comparative analysis between S34709 and S34751 HAZ and FZ, in addition to welds with alternative filler S16880, is planned, including SRC testing at 600–750°C temperatures, metallurgical characterization of intergranular and intragranular precipitates, and additional thermodynamic analyses to complement microstructural observations. Final conclusions on SRC susceptibility comparisons between S34751 and S34709 welds, including alternative fillers, will be made.
more »
« less
- Award ID(s):
- 2052819
- PAR ID:
- 10609309
- Publisher / Repository:
- American Society of Mechanical Engineers
- Date Published:
- ISBN:
- 978-0-7918-8850-6
- Format(s):
- Medium: X
- Location:
- Bellevue, Washington, USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The local yielding behavior in base metal, heat-affected zone, fusion boundary region, and weld metal of low-alloy steel/Alloy 625 filler metal welds was quantified using digital image correlation instrumented cross-weld tensile test. The tested welds exhibited undermatching, matching, or overmatching weld metal yield strength with significant gradients in the local yielding behavior. An undermatching weld yielded at 69 MPa below the base metal yield stress, accumulating to 0.72% total strain. The base metal in an overmatching weld had 110 MPa lower yield strength than the weld metal. The strong strain hardening response in the Alloy 625 weld metal, within the uniform elongation range, and its constraining effect on the fusion boundary region and heat affected zone, led to extensive strain accumulation, necking, and final failure in the base metal of all tested welds. The yielding behavior of the tested welds was compared to stress-based criteria, utilizing minimum specified and as-delivered yield and ultimate tensile strength, and to strain-based criteria. The capability of digital image correlation instrumented cross-weld tensile testing to quantify local yielding and strain accumulation demonstrates potential application in proving conformity to stress-based and strain-based design criteria of dissimilar and matching filler metal welds.more » « less
-
API 5L Grade X65 steel pipes, internally clad alloy 625, are commonly utilized in pipelines and risers for subsea oil and gas extraction. Gird welds in such pipes are conventionally made using alloy 625 filler metal. However, alloy 625 weld metal cannot meet the base metal yield strength overmatching requirement for subsea reel lay installation. This study explored materials selection and process development for low-alloy steel girth welds in API 5L Grade X65 steel pipes, internally clad with alloy 625. Welding with a higher melting point filler metal over a lower melting substrate, i.e., low-alloy steel over Ni-based alloy, is impractical due to increased susceptibility to solidification cracking and solidification shrinkage porosity. Pseudo-binary phase diagrams developed for various combinations of low alloy steel filler metals and Ni-based alloy substrates identified good compatibility between ER80S-G filler metal and alloy 686. The solidification temperature range and the tendency for partitioning of alloying elements were significantly lower throughout the entire ER80S-G/alloy 686 dilution range than in the low alloy steel filler metals/alloy 625 combinations. Extensive process optimization effort to reduce the dilution of alloy 686 root pass in the low-alloy steel weld metal and avoid incomplete fusion defects allowed for the production of defect-free girth welds. These welds met the yield strength and ductility requirements for subsea reel lay installation of pipelines. Process optimization for bead tempering significantly narrowed the high hardness region in the ER80S-G/alloy 686 partially mixed zone.more » « less
-
Abstract UNS N06693 is a Ni-base alloy that provides metal dusting corrosion resistance in steam generator pipes with operating temperatures above 500°C. A crack failure occurred in a 6.5mm thick similar weld pipe joint, located at both fusion zone and heat affected zone, after about 10 years in service and 2 months after weld repair in adjacent weld, which warranted an investigation into possible root causes of failure. This study investigates the potential failure mechanisms that may arise during service (such as stress relaxation cracking, stress corrosion cracking, ductility dip cracking, and creep failure) for UNS N06693 in order to understand the observed cracking behavior. In this year, preliminary fractography, metallurgical characterization, thermodynamic and kinetic CALHAD simulations, and investigation into potential contributing factors (e.g., weld procedure specifications (WPS) and post weld heat treatment (PWHT)) to failure have been completed. The fracture surfaces indicate brittle, intergranular failure, such that no shear lips were observed, and radial lines (crack propagation) were primarily observed in weld fusion zone. Metallurgical characterization near the fracture surface is conducted to reveal the contributing factors to failure, such as intermetallic phases (e.g., Cr-rich α-phase) and distribution of carbide particles (e.g., intergranular chromium carbides), that may contribute to reduced cracking and sensitization resistance. Blocky, intergranular Cr-rich precipitates, either Cr-rich α-phase or Cr-rich M23C6., are observed behind secondary cracks. Based on the initial findings, contributing factors for failure considered are increase in tensile residual stresses due to nearby repair field weld and grain boundary embrittlement due to coarse, blocky Cr-rich phase that likely developed during initial PWHT and within the 10-year service window. In the following year, a more in-depth metallurgical characterization, discussion on contributing causes and possible mitigation strategies for improving microstructural stability and performance-based weldability (e.g., weld procedure and PWHT design), and conclusions with root cause analysis will be provided.more » « less
-
Dissimilar metal welds (DMWs) are routinely used in the oil and gas industries for structural joining of high-strength steels to eliminate the need for post-weld heat treatment (PWHT) in field welding. Hydrogen-assisted cracking (HAC) can occur in DMWs during subsea service under cathodic protection. DMWs of two material combinations, 8630 steel/FM 625 and F22 steel/FM 625, produced with two welding procedures, non-temper bead (BS1) and temper bead (BS3), in the as-welded and PWHT conditions were investigated in this study. These DMWs were subjected to metallurgical characterization and testing with the delayed hydrogen cracking test (DHCT) to identify the effects of base metal composition, welding and PWHT procedures on their HAC susceptibility. The HAC susceptibility was ranked using the time to failure in the DHCT at loads equivalent to 90% of the base metal yield strength (YS) and the apparent stress threshold for HAC. A criterion for resistance to HAC in the testing conditions of DHCT was also established. The results of this study showed that 8630/FM 625 DMWs were more susceptible to HAC than the F22/FM 625 DMWs. PWHT did not sufficiently reduce the HAC susceptibility of the 8630/FM 625 and F22/FM 625 BS1 welds. DMWs produced using BS3 performed better than BS1 DMWs. The post-weld heat-treated F22/FM 625 BS3 DMW passed the HAC resistance criterion.more » « less
An official website of the United States government

