skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Absolute structure determination of Berkecoumarin by X-ray and electron diffraction
X-ray and electron diffraction methods independently identify the S-enanti­omer of Berkecoumarin [systematic name: (S)-8-hy­droxy-3-(2-hy­droxy­prop­yl)-6-meth­oxy-2H-chromen-2-one]. Isolated from Berkeley Pit Lake Penicillium sp., Berkecoumarin is a natural product with a light-atom com­position (C13H14O5) that challenges in-house absolute structure determination by anomalous scattering. This study further demonstrates the utility of dynamical refinement of electron-diffraction data for absolute structure determination.  more » « less
Award ID(s):
2132227
PAR ID:
10609391
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
International Union of Crystallography (co-published with Wiley)
Date Published:
Journal Name:
Acta Crystallographica Section C Structural Chemistry
Volume:
80
Issue:
5
ISSN:
2053-2296
Page Range / eLocation ID:
143 to 147
Subject(s) / Keyword(s):
crystal structure absolute structure determination electron diffraction microED dynamical refinement Berkecoumarin chromenone coumarin natural product.
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Microcrystal electron diffraction, commonly referred to as MicroED, has become a powerful tool for high-resolution structure determination. The method makes use of cryogenic transmission electron microscopes to collect electron diffraction data from crystals that are several orders of magnitude smaller than those used by other conventional diffraction techniques. MicroED has been used on a variety of samples including soluble proteins, membrane proteins, small organic molecules, and materials. Here we will review the MicroED method and highlight recent advancements to the methodology, as well as describe applications of MicroED within the fields of structural biology and chemical crystallography. 
    more » « less
  2. Jez, Joseph M.; Topp, Christopher N. (Ed.)
    Structural biologists rely on X-ray crystallography as the main technique for determining the three-dimensional structures of macromolecules; however, in recent years, new methods that go beyond X-ray-based technologies are broadening the selection of tools to understand molecular structure and function. Simultaneously, national facilities are developing programming tools and maintaining personnel to aid novice structural biologists in de novo structure determination. The combination of X-ray free electron lasers (XFELs) and serial femtosecond crystallography (SFX) now enable time-resolved structure determination that allows for capture of dynamic processes, such as reaction mechanism and conformational flexibility. XFEL and SFX, along with microcrystal electron diffraction (MicroED), help side-step the need for large crystals for structural studies. Moreover, advances in cryogenic electron microscopy (cryo-EM) as a tool for structure determination is revolutionizing how difficult to crystallize macromolecules and/or complexes can be visualized at the atomic scale. This review aims to provide a broad overview of these new methods and to guide readers to more in-depth literature of these methods. 
    more » « less
  3. The true molecular conformation and the crystal structure of benzo[ e ]dinaphtho[2,3- a ;1′,2′,3′,4′- ghi ]fluoranthene, 7,14-diphenylnaphtho[1,2,3,4- cde ]bisanthene and 7,16-diphenylnaphtho[1,2,3,4- cde ]helianthrene were determined ab initio by 3D electron diffraction. All three molecules are remarkable polycyclic aromatic hydrocarbons. The molecular conformation of two of these compounds could not be determined via classical spectroscopic methods due to the large size of the molecule and the occurrence of multiple and reciprocally connected aromatic rings. The molecular structure of the third molecule was previously considered provisional. These compounds were isolated as by-products in the synthesis of similar products and were at the same time nanocrystalline and available only in very limited amounts. 3D electron diffraction data, taken from submicrometric single crystals, allowed for direct ab initio structure solution and the unbiased determination of the internal molecular conformation. Detailed synthetic routes and spectroscopic analyses are also discussed. Based on many-body perturbation theory simulations, benzo[ e ]dinaphtho[2,3- a ;1′,2′,3′,4′- ghi ]fluoranthene may be a promising candidate for triplet–triplet annihilation and 7,14-diphenylnaphtho[1,2,3,4- cde ]bisanthene may be a promising candidate for intermolecular singlet fission in the solid state. 
    more » « less
  4. This study successfully implemented microcrystal electron diffraction (microED) and X-ray powder diffraction (XRPD) for the crystal structure determination of a new phase, TAF-CNU-1, Ni(C8H4O4)·3H2O, solved by microED from single microcrystals in the powder and refined at the kinematic and dynamic electron diffraction theory levels. This nickel metal–organic framework (MOF), together with its cobalt and manganese analogues with formula M(C8H4O4)·2H2O with M = MnII or CoII, were synthesized in aqueous media as one-pot preparations from the corresponding hydrated metal chlorides and sodium terephthalate, as a promising ‘green’ synthetic route to moisture stable MOFs. The crystal structures of the two latter materials have been previously determined ab initio from X-ray powder diffraction. The advantages and disadvantages of both structural characterization techniques are briefly summarized. Additional solid-state property characterization was carried out using thermogravimetric analysis, scanning electron microscopy and Fourier transform infrared spectroscopy. 
    more » « less
  5. Abstract Transmission electron microscopy (TEM) is essential for determining atomic scale structures in structural biology and materials science. In structural biology, three-dimensional structures of proteins are routinely determined from thousands of identical particles using phase-contrast TEM. In materials science, three-dimensional atomic structures of complex nanomaterials have been determined using atomic electron tomography (AET). However, neither of these methods can determine the three-dimensional atomic structure of heterogeneous nanomaterials containing light elements. Here, we perform ptychographic electron tomography from 34.5 million diffraction patterns to reconstruct an atomic resolution tilt series of a double wall-carbon nanotube (DW-CNT) encapsulating a complex ZrTe sandwich structure. Class averaging the resulting tilt series images and subpixel localization of the atomic peaks reveals a Zr11Te50structure containing a previously unobserved ZrTe2phase in the core. The experimental realization of atomic resolution ptychographic electron tomography will allow for the structural determination of a wide range of beam-sensitive nanomaterials containing light elements. 
    more » « less