Abstract The elliptic flow$$(v_2)$$ of$${\textrm{D}}^{0}$$ mesons from beauty-hadron decays (non-prompt$${\textrm{D}}^{0})$$ was measured in midcentral (30–50%) Pb–Pb collisions at a centre-of-mass energy per nucleon pair$$\sqrt{s_{\textrm{NN}}} = 5.02$$ TeV with the ALICE detector at the LHC. The$${\textrm{D}}^{0}$$ mesons were reconstructed at midrapidity$$(|y|<0.8)$$ from their hadronic decay$$\mathrm {D^0 \rightarrow K^-\uppi ^+}$$ , in the transverse momentum interval$$2< p_{\textrm{T}} < 12$$ GeV/c. The result indicates a positive$$v_2$$ for non-prompt$${{\textrm{D}}^{0}}$$ mesons with a significance of 2.7$$\sigma $$ . The non-prompt$${{\textrm{D}}^{0}}$$ -meson$$v_2$$ is lower than that of prompt non-strange D mesons with 3.2$$\sigma $$ significance in$$2< p_\textrm{T} < 8~\textrm{GeV}/c$$ , and compatible with the$$v_2$$ of beauty-decay electrons. Theoretical calculations of beauty-quark transport in a hydrodynamically expanding medium describe the measurement within uncertainties.
more »
« less
This content will become publicly available on April 1, 2026
Laboratory study of bed shear stress in gradually varied flow over a sudden change in bed roughness
Abstract The evolution of bed shear stress in open-channel flow due to a sudden change in bed roughness was investigated experimentally for rough-to-smooth (RTS) and smooth-to-rough (STR) transitions. The velocity field was measured in the longitudinal-vertical plane from upstream to downstream using a Particle Image Velocimetry system. The bed shear stress was determined from the measured velocity profile and water depth using various methods. It was found that the variation of bed shear stress in gradually varied flow through a roughness transition was influenced by both flow depth and bottom roughness. In both RTS and STR transitions, the bed shear stress adjusted to the new bed condition almost immediately even though the velocity profile away from the bed was still evolving, but unlike external and close-conduit flows the bed shear stress in open-channel flows continued to evolve until the flow depth was uniform. It is shown that the evolution of bed shear stress in a STR transition is dependent on the choice of the displacement height on the rough bed, which affects the mixing length used to derive the logarithmic velocity profile and equivalent roughness. Bed shear stress variation consistent with published data was obtained when the$${k}_{s}/{d}_{90}$$ ratio was determined as a function of the$$h/{d}_{90}$$ ratio, where$${k}_{s}$$ is the equivalent roughness height,$$h$$ is the flow depth, and$${d}_{90}$$ is the grain diameter with 90% of finer particles.
more »
« less
- Award ID(s):
- 2049293
- PAR ID:
- 10609393
- Publisher / Repository:
- Springer Nature
- Date Published:
- Journal Name:
- Environmental Fluid Mechanics
- Volume:
- 25
- Issue:
- 2
- ISSN:
- 1567-7419
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We perform path-integral molecular dynamics (PIMD), ring-polymer MD (RPMD), and classical MD simulations of H$$_2$$ O and D$$_2$$ O using the q-TIP4P/F water model over a wide range of temperatures and pressures. The density$$\rho (T)$$ , isothermal compressibility$$\kappa _T(T)$$ , and self-diffusion coefficientsD(T) of H$$_2$$ O and D$$_2$$ O are in excellent agreement with available experimental data; the isobaric heat capacity$$C_P(T)$$ obtained from PIMD and MD simulations agree qualitatively well with the experiments. Some of these thermodynamic properties exhibit anomalous maxima upon isobaric cooling, consistent with recent experiments and with the possibility that H$$_2$$ O and D$$_2$$ O exhibit a liquid-liquid critical point (LLCP) at low temperatures and positive pressures. The data from PIMD/MD for H$$_2$$ O and D$$_2$$ O can be fitted remarkably well using the Two-State-Equation-of-State (TSEOS). Using the TSEOS, we estimate that the LLCP for q-TIP4P/F H$$_2$$ O, from PIMD simulations, is located at$$P_c = 167 \pm 9$$ MPa,$$T_c = 159 \pm 6$$ K, and$$\rho _c = 1.02 \pm 0.01$$ g/cm$$^3$$ . Isotope substitution effects are important; the LLCP location in q-TIP4P/F D$$_2$$ O is estimated to be$$P_c = 176 \pm 4$$ MPa,$$T_c = 177 \pm 2$$ K, and$$\rho _c = 1.13 \pm 0.01$$ g/cm$$^3$$ . Interestingly, for the water model studied, differences in the LLCP location from PIMD and MD simulations suggest that nuclear quantum effects (i.e., atoms delocalization) play an important role in the thermodynamics of water around the LLCP (from the MD simulations of q-TIP4P/F water,$$P_c = 203 \pm 4$$ MPa,$$T_c = 175 \pm 2$$ K, and$$\rho _c = 1.03 \pm 0.01$$ g/cm$$^3$$ ). Overall, our results strongly support the LLPT scenario to explain water anomalous behavior, independently of the fundamental differences between classical MD and PIMD techniques. The reported values of$$T_c$$ for D$$_2$$ O and, particularly, H$$_2$$ O suggest that improved water models are needed for the study of supercooled water.more » « less
-
Abstract LetXbe ann-element point set in thek-dimensional unit cube$$[0,1]^k$$ where$$k \ge 2$$ . According to an old result of Bollobás and Meir (Oper Res Lett 11:19–21, 1992) , there exists a cycle (tour)$$x_1, x_2, \ldots , x_n$$ through thenpoints, such that$$\left( \sum _{i=1}^n |x_i - x_{i+1}|^k \right) ^{1/k} \le c_k$$ , where$$|x-y|$$ is the Euclidean distance betweenxandy, and$$c_k$$ is an absolute constant that depends only onk, where$$x_{n+1} \equiv x_1$$ . From the other direction, for every$$k \ge 2$$ and$$n \ge 2$$ , there existnpoints in$$[0,1]^k$$ , such that their shortest tour satisfies$$\left( \sum _{i=1}^n |x_i - x_{i+1}|^k \right) ^{1/k} = 2^{1/k} \cdot \sqrt{k}$$ . For the plane, the best constant is$$c_2=2$$ and this is the only exact value known. Bollobás and Meir showed that one can take$$c_k = 9 \left( \frac{2}{3} \right) ^{1/k} \cdot \sqrt{k}$$ for every$$k \ge 3$$ and conjectured that the best constant is$$c_k = 2^{1/k} \cdot \sqrt{k}$$ , for every$$k \ge 2$$ . Here we significantly improve the upper bound and show that one can take$$c_k = 3 \sqrt{5} \left( \frac{2}{3} \right) ^{1/k} \cdot \sqrt{k}$$ or$$c_k = 2.91 \sqrt{k} \ (1+o_k(1))$$ . Our bounds are constructive. We also show that$$c_3 \ge 2^{7/6}$$ , which disproves the conjecture for$$k=3$$ . Connections to matching problems, power assignment problems, related problems, including algorithms, are discussed in this context. A slightly revised version of the Bollobás–Meir conjecture is proposed.more » « less
-
Abstract The radiation of steady surface gravity waves by a uniform stream$$U_{0}$$ over locally confined (width$$L$$ ) smooth topography is analyzed based on potential flow theory. The linear solution to this classical problem is readily found by Fourier transforms, and the nonlinear response has been studied extensively by numerical methods. Here, an asymptotic analysis is made for subcritical flow$$D/\lambda > 1$$ in the low-Froude-number ($$F^{2} \equiv \lambda /L \ll 1$$ ) limit, where$$\lambda = U_{0}^{2} /g$$ is the lengthscale of radiating gravity waves and$$D$$ is the uniform water depth. In this regime, the downstream wave amplitude, although formally exponentially small with respect to$$F$$ , is determined by a fully nonlinear mechanism even for small topography amplitude. It is argued that this mechanism controls the wave response for a broad range of flow conditions, in contrast to linear theory which has very limited validity.more » « less
-
Abstract Let$$\mathbb {F}_q^d$$ be thed-dimensional vector space over the finite field withqelements. For a subset$$E\subseteq \mathbb {F}_q^d$$ and a fixed nonzero$$t\in \mathbb {F}_q$$ , let$$\mathcal {H}_t(E)=\{h_y: y\in E\}$$ , where$$h_y:E\rightarrow \{0,1\}$$ is the indicator function of the set$$\{x\in E: x\cdot y=t\}$$ . Two of the authors, with Maxwell Sun, showed in the case$$d=3$$ that if$$|E|\ge Cq^{\frac{11}{4}}$$ andqis sufficiently large, then the VC-dimension of$$\mathcal {H}_t(E)$$ is 3. In this paper, we generalize the result to arbitrary dimension by showing that the VC-dimension of$$\mathcal {H}_t(E)$$ isdwhenever$$E\subseteq \mathbb {F}_q^d$$ with$$|E|\ge C_d q^{d-\frac{1}{d-1}}$$ .more » « less
An official website of the United States government
