skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 1, 2026

Title: Electrically Tunable Chiral Ferroelectric Nematic Liquid Crystal Reflectors
Abstract Manipulating light is an important area of optical research and development. To that end, tunable dichroic devices in which the reflectivity at differing wavelengths can be adjusted, are particularly valuable. This work is motivated by recent studies of the optical properties of chiral ferroelectric nematic liquid crystals (FNLCs). Here electro‐optical studies are presented on two room temperature, FNLC materials that demonstrate electrically tunable reflectivity when subject to a field below 0.2 V µm−1. Moreover, under appropriate conditions, the reflectivity can also be electrically (and reversibly) tuned (without change of color) from 0% to 40%. Reversible, low voltage tunable mirrors, having miniscule power consumption and operable around ambient temperature are expected to be useful in diverse applications ranging from energy‐saving, smart windows to virtual reality interfaces.  more » « less
Award ID(s):
2210083
PAR ID:
10609440
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Advanced Functional Materials
Volume:
35
Issue:
3
ISSN:
1616-301X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Tunable optical lenses are in great demand in modern technologies ranging from augmented and virtual reality to sensing and detection. In this work, electrically tunable microlenses based on a polymer‐stabilized chiral ferroelectric nematic liquid crystal are described. The power of the lens can be quickly (within 5 ms) varied by ≈500 diopters by ramping an in‐plane electric field from 0 to 2.5 V µm−1. Importantly, within this relatively low‐amplitude field range, the lens is optically isotropic; thus, its focal length is independent of the polarization of incoming light. This remarkable performance combines the advantages of electrically tuned isotropic lenses and the field‐controlled shape of the lens, which are unique properties of chiral ferroelectric nematic liquid crystals and have no counterpart in other liquid crystals. The achieved lens performance represents a significant step forward as compared to liquid lenses controlled by electrowetting and opens new possibilities in various applications such as biomimetic optics, security printing, and solar energy concentration. 
    more » « less
  2. Abstract Electrically pumped lasing from hybrid organic–inorganic metal‐halide perovskite semiconductors could lead to nonepitaxial diode lasers that are tunable throughout the visible and near‐infrared spectrum; however, a viable laser diode architecture has not been demonstrated to date. Here, an important step toward this goal is achieved by demonstrating two distinct distributed feedback light‐emitting diode architectures that achieve low threshold, optically pumped lasing. Bottom‐ and top‐emitting perovskite light‐emitting diodes are fabricated on glass and Si substrates, respectively, using a polydimethylsiloxane stamp in the latter case to nanoimprint a second‐order distributed feedback grating directly into the methylammonium lead iodide active layer. The devices exhibit room temperature thresholds as low as ≈6 µJ cm−2, a peak external quantum efficiency of ≈0.1%, and a maximum current density of ≈2 A cm−2that is presently limited by degradation associated with excessive leakage current. In this low current regime, electrical injection does not adversely affect the optical pump threshold, leading to a projected threshold current density of ≈2 kA cm−2. Operation at low temperature can significantly decrease this threshold, but must overcome extrinsic carrier freeze‐out in the doped organic transport layers to maintain a reasonable drive voltage. 
    more » « less
  3. Abstract 2D magnetic materials hold promise for quantum and spintronic applications. 2D antiferromagnetic materials are of particular interest due to their relative insensitivity to external magnetic fields and higher switching speeds compared to 2D ferromagnets. However, their lack of macroscopic magnetization impedes detection and control of antiferromagnetic order, thus motivating magneto‐electrical measurements for these purposes. Additionally, many 2D magnetic materials are ambient‐reactive and electrically insulating or highly resistive below their magnetic ordering temperatures, which imposes severe constraints on electronic device fabrication and characterization. Herein, these issues are overcome via a fabrication protocol that achieves electrically conductive devices from the ambient‐reactive 2D antiferromagnetic semiconductor NiI2. The resulting gate‐tunable transistors show band‐like electronic transport below the antiferromagnetic and multiferroic transition temperatures of NiI2, revealing a Hall mobility of 15 cm2 V−1 s−1at 1.7 K. These devices also allow direct electrical probing of the thickness‐dependent multiferroic phase transition temperature of NiI2from 59 K (bulk) to 28 K (monolayer). 
    more » « less
  4. Abstract Thermophotovoltaic (TPV) technology converts heat into electricity using thermal radiation. Increasing operating temperature is a highly effective approach to improving the efficiency of TPV systems. However, most reported TPV selective emitters degrade rapidly via. oxidation as operating temperatures increase. To address this issue, replacing nanostructured oxide‐metal films with oxide–oxide films is a promising way to greatly limit oxidation, even under high‐temperature conditions. This study introduces new all‐oxide photonic crystal designs for high‐temperature stable TPV systems, overcoming limitations of metal phases and offering promising material choices. The designs utilize both yttria‐stabilized zirconia (YSZ)/MgO and CeO2/MgO combinations with a multilayer structure and stable high‐quality growth. Both designsexhibit positive optical dielectric constants with tunable reflectivity, measured via optical characterization. Thermal stability testing using in situ heating X‐ray diffraction (XRD) suggests high‐temperature stability (up to 1000 °C) of both YSZ/MgO and CeO2/MgO systems. The results demonstrate a new and promising approach to improve the high‐temperature stability of TPV systems, which can be extended to a wide range of material selection and potential designs. 
    more » « less
  5. Abstract Liquid crystalline elastomers (LCEs) that retain the cholesteric phase (CLCEs) are soft, polymeric materials that retain periodic structure and exhibit a selective reflection. While prior studies have examined thermochromism in CLCEs, the association of temperature change and reflection wavelength shift has been limited to 1.4 nm °C−1. Here, CLCEs with intra‐mesogenic supramolecular bonds are prepared to enhance tunability as well triple the rate (e.g., 4.8 nm °C−1). Specifically, these materials incorporate liquid crystalline monomers based on dimerized oxy‐benzoic acid (OBA) derivatives. Increasing the concentration of the OBA comonomers increases the magnitude of red‐shifting thermochromism of the selective reflection. At and above a threshold concentration, the selective reflection in the CLCEs can disappear upon heating, analogous to on‐off “switching.” Further, the introduction of the supramolecular bonds within the CLCE enable mechanical programming and enhanced one‐time tunable thermochromism via a one‐way shape memory process. Accordingly, this research could enable functional use in low temperature sensitive optical elements, fail‐safe thermal indicators for food packaging, and smart window coatings. 
    more » « less