Noise and inconsistency commonly exist in real-world information networks, due to the inherent error-prone nature of human or user privacy concerns. To date, tremendous efforts have been made to advance feature learning from networks, including the most recent graph convolutional networks (GCNs) or attention GCN, by integrating node content and topology structures. However, all existing methods consider networks as error-free sources and treat feature content in each node as independent and equally important to model node relations. Noisy node content, combined with sparse features, provides essential challenges for existing methods to be used in real-world noisy networks. In this article, we propose feature-based attention GCN (FA-GCN), a feature-attention graph convolution learning framework, to handle networks with noisy and sparse node content. To tackle noise and sparse content in each node, FA-GCN first employs a long short-term memory (LSTM) network to learn dense representation for each node feature. To model interactions between neighboring nodes, a feature-attention mechanism is introduced to allow neighboring nodes to learn and vary feature importance, with respect to their connections. By using a spectral-based graph convolution aggregation process, each node is allowed to concentrate more on the most determining neighborhood features aligned with the corresponding learning task. Experiments and validations, w.r.t. different noise levels, demonstrate that FA-GCN achieves better performance than the state-of-the-art methods in both noise-free and noisy network environments. 
                        more » 
                        « less   
                    
                            
                            Motif-Based Graph Representation Learning with Application to Chemical Molecules
                        
                    
    
            This work considers the task of representation learning on the attributed relational graph (ARG). Both the nodes and edges in an ARG are associated with attributes/features allowing ARGs to encode rich structural information widely observed in real applications. Existing graph neural networks offer limited ability to capture complex interactions within local structural contexts, which hinders them from taking advantage of the expression power of ARGs. We propose motif convolution module (MCM), a new motif-based graph representation learning technique to better utilize local structural information. The ability to handle continuous edge and node features is one of MCM’s advantages over existing motif-based models. MCM builds a motif vocabulary in an unsupervised way and deploys a novel motif convolution operation to extract the local structural context of individual nodes, which is then used to learn higher level node representations via multilayer perceptron and/or message passing in graph neural networks. When compared with other graph learning approaches to classifying synthetic graphs, our approach is substantially better at capturing structural context. We also demonstrate the performance and explainability advantages of our approach by applying it to several molecular benchmarks. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1933525
- PAR ID:
- 10609456
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Informatics
- Volume:
- 10
- Issue:
- 1
- ISSN:
- 2227-9709
- Page Range / eLocation ID:
- 8
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Local structural information can increase the adaptability of graph convolutional networks to large graphs with heterogeneous topology. Existing methods only use relatively simplistic topological information, such as node degrees.We present a novel approach leveraging advanced topological information, i.e., persistent homology, which measures the information flow efficiency at different parts of the graph. To fully exploit such structural information in real world graphs, we propose a new network architecture which learns to use persistent homology information to reweight messages passed between graph nodes during convolution. For node classification tasks, our network outperforms existing ones on a broad spectrum of graph benchmarks.more » « less
- 
            Local structural information can increase the adaptability of graph convolutional networks to large graphs with heterogeneous topology. Existing methods only use relatively simplistic topological information, such as node degrees.We present a novel approach leveraging advanced topological information, i.e., persistent homology, which measures the information flow efficiency at different parts of the graph. To fully exploit such structural information in real world graphs, we propose a new network architecture which learns to use persistent homology information to reweight messages passed between graph nodes during convolution. For node classification tasks, our network outperforms existing ones on a broad spectrum of graph benchmarks.more » « less
- 
            Graph neural networks are powerful graph representation learners in which node representations are highly influenced by features of neighboring nodes. Prior work on individual fairness in graphs has focused only on node features rather than structural issues. However, from the perspective of fairness in high-stakes applications, structural fairness is also important, and the learned representations may be systematically and undesirably biased against unprivileged individuals due to a lack of structural awareness in the learning process. In this work, we propose a pre-processing bias mitigation approach for individual fairness that gives importance to local and global structural features. We mitigate the local structure discrepancy of the graph embedding via a locally fair PageRank method. We address the global structure disproportion between pairs of nodes by introducing truncated singular value decomposition-based pairwise node similarities. Empirically, the proposed pre-processed fair structural features have superior performance in individual fairness metrics compared to the state-of-the-art methods while maintaining prediction performance.more » « less
- 
            Deep learning-based predictive models, leveraging Electronic Health Records (EHR), are receiving increasing attention in healthcare. An effective representation of a patient's EHR should hierarchically encompass both the temporal relationships between historical visits and medical events, and the inherent structural information within these elements. Existing patient representation methods can be roughly categorized into sequential representation and graphical representation. The sequential representation methods focus only on the temporal relationships among longitudinal visits. On the other hand, the graphical representation approaches, while adept at extracting the graph-structured relationships between various medical events, fall short in effectively integrate temporal information. To capture both types of information, we model a patient's EHR as a novel temporal heterogeneous graph. This graph includes historical visits nodes and medical events nodes. It propagates structured information from medical event nodes to visit nodes and utilizes time-aware visit nodes to capture changes in the patient's health status. Furthermore, we introduce a novel temporal graph transformer (TRANS) that integrates temporal edge features, global positional encoding, and local structural encoding into heterogeneous graph convolution, capturing both temporal and structural information. We validate the effectiveness of TRANS through extensive experiments on three real-world datasets. The results show that our proposed approach achieves state-of-the-art performance.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    