Water supplies for household use and irrigated agriculture rely on groundwater wells. When wells are drilled into a highly pressurized aquifer, groundwater may flow up the well and onto the land surface without pumping. These flowing artesian wells were common in the early 1900s in the United States before intensive groundwater withdrawals began, but their present-day prevalence remains unknown. Here, we compile and analyze ten thousand well water observations made more than a century ago. We show that flowing artesian conditions characterized ~61% of wells tapping confined aquifers before 1910, but only ~4% of wells tapping confined aquifers today. This pervasive loss of flowing artesian conditions evidences a widespread depressurization of confined aquifers after a century of intensive groundwater use in the United States. We conclude that this depressurization of confined aquifers has profoundly changed groundwater storage and flow, increasing the vulnerability of deep aquifers to pollutants and contributing to land subsidence.
more »
« less
This content will become publicly available on March 30, 2026
Testing different scenarios of freshwater emplacement on the New England continental shelf using hydrologic modeling constrained by electromagnetic, isotopic, and salinity data
Recent advances in marine electromagnetic surveys have allowed geophysicists to interpret and map offshore freshwater resources with unprecedented resolution and to test inferences regarding onshore-offshore hydrologic connections. To date, however, little is known about the timing or isotopic composition of this unconventional water resource. Here, we reconstructed the Pleistocene hydrogeology of the U.S. Atlantic continental shelf using a cross-sectional paleo-hydrogeologic model to explore possible mechanisms and timing of freshwater emplacement offshore Martha’s Vineyard, Massachusetts. We considered two scenarios in which the Laurentide ice sheet extended different distances offshore, and a third scenario without any ice sheet. The hydrostratigraphic framework was constructed by integrating borehole lithology data, seismic data, and formation resistivity data. Model results were compared to formation resistivity data as well as borehole salinity, groundwater residence time, and stable isotope profiles. Neither of the ice-sheet scenarios provided a significantly better fit to the onshore isotopic and offshore salinity observations than the third scenario. All three model scenarios predicted freshwater emplacement within Tertiary and Cretaceous units. Pleistocene deposits were largely devoid of freshened groundwater. Simulated groundwater residence times for the midshelf region ranged between 104 and 106 yr at depths of <500 m. Simulated groundwater ages from wells completed within Pleistocene confined aquifers are consistent with measured groundwater ages within confined aquifers of Martha’s Vineyard and Nantucket Island (2750−5900 yr). Analysis of onshore 3H/3He dating data indicates that some wells contain a mixture of old and modern (<60 yr) groundwater. Calculated fossil groundwater in the midshelf region that included ice-sheet loading retained relatively low δ18O values, consistent with glacial meltwater recharge. Model results suggest that much of the freshwater emplacement occurred within the last glacial cycle and that the island and offshore hydrogeologic systems appear to be connected.
more »
« less
- Award ID(s):
- 1925974
- PAR ID:
- 10609868
- Publisher / Repository:
- Geological Society of America
- Date Published:
- Journal Name:
- Geological Society of America bulletin
- ISSN:
- 0016-7606
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Fluvio-deltaic aquifers are the primary source of drinking water for the people of Bangladesh. Such aquifers, which comprise the Ganges-Brahmaputra-Meghna Delta, are extremely hydrogeologically heterogeneous. Because of widespread groundwater quality issues in Bangladesh, it is crucial to know the hydrostratigraphic architecture and hydrochemistry of the aquifers as some units are contaminated whereas others are safe. Geophysical methods provide a potentially effective and non-invasive method for extensive characterization of these aquifers. This study applies and investigates the limitations of using electrical resistivity imaging (ERI) for mapping the hydrostratigraphy and salinity of an aquifer-aquitard system adjacent to the Meghna River. Some ER sections showed excellent correlation between resistivity and grain size. These suggest that ERI is a powerful tool for mapping internal aquifer architecture and their boundaries with finer-grained aquitards which clearly appear as low ER zones. However, in parts of some ER sections, variations in electrical properties were determined by porewater resistivity. In these cases, low ER was indicative of brine and did not indicate the presence of finer-grained materials such as silt or clay. Accordingly, the following hydrostratigraphic zones with different resistivities were detected: (1) aquifers saturated with fresh ground water, (2) a regional silt/clay aquitard, and (3) a deeper brine-saturated formation. In addition, shallow silt/clay pockets were detected close to the river and below the vadose zone. ERI is thus a promising technique for mapping aquifers versus aquitards. However, the observations are easily confounded by porewater salinity. In such cases, borehole information and groundwater salinity measurements are necessary for ground-truthing.more » « less
-
Fluvio-deltaic aquifers are the primary source of drinking water for the people of Bangladesh. Such aquifers, which comprise the Ganges-Brahmaputra-Meghna Delta, are extremely hydrogeologically heterogeneous. Because of widespread groundwater quality issues in Bangladesh, it is crucial to know the hydrostratigraphic architecture and hydrochemistry of the aquifers as some units are contaminated whereas others are safe. Geophysical methods provide a potentially effective and non-invasive method for extensive characterization of these aquifers. Here we report the application and investigate the limitations of using electrical resistivity imaging (ERI) for mapping the hydrostratigraphy and salinity of an aquifer-aquitard system adjacent to the Meghna River. In some ER sections we observed excellent correlation between resistivity and grain size. These show that ERI is a powerful tool for mapping internal aquifer architecture and their boundaries with finer-grained aquitards which clearly appear as low ER zones. However, in parts of some ER sections, variations in electrical properties were determined by porewater resistivity. In these cases, low ER was indicative of brine and did not indicate the presence of finer-grained materials such as silt or clay. Accordingly, the following hydrostratigraphic zones with different resistivities were detected: (1) aquifers saturated with fresh ground water, (2) a regional silt/clay aquitard, and (3) a deeper brine-saturated formation. In addition, shallow silt/clay pockets were detected close to the river and below the vadose zone. ERI is thus a promising technique for mapping aquifers versus aquitards. However, the observations are easily confounded by porewater salinity. In such cases, borehole information and groundwater salinity measurements are necessary for ground-truthing.more » « less
-
Abstract Ice cores and offshore sedimentary records demonstrate enhanced ice loss along Antarctic coastal margins during millennial-scale warm intervals within the last glacial termination. However, the distal location and short temporal coverage of these records leads to uncertainty in both the spatial footprint of ice loss, and whether millennial-scale ice response occurs outside of glacial terminations. Here we present a >100kyr archive of periodic transitions in subglacial precipitate mineralogy that are synchronous with Late Pleistocene millennial-scale climate cycles. Geochemical and geochronologic data provide evidence for opal formation during cold periods via cryoconcentration of subglacial brine, and calcite formation during warm periods through the addition of subglacial meltwater originating from the ice sheet interior. These freeze-flush cycles represent cyclic changes in subglacial hydrologic-connectivity driven by ice sheet velocity fluctuations. Our findings imply that oscillating Southern Ocean temperatures drive a dynamic response in the Antarctic ice sheet on millennial timescales, regardless of the background climate state.more » « less
-
Abstract Coastal aquifers supply freshwater to nearly half the global population, yet they are threatened by salinization. Salinities are typically estimated assuming steady‐state, neglecting the effect of cyclical forcings on average salinity distributions. Here, numerical modeling is used to test this assumption. Multi‐scale fluctuations in sea level (SL) are simulated, from tides to glacial cycles. Results show that high‐frequency fluctuations alter average salinities compared with the steady‐state distribution produced by average SL. Low‐frequency forcing generates discrepancies between present‐day salinities estimated with and without considering the cyclical forcing due to overshoot effects. This implies that salinities in coastal aquifers may be erroneously estimated when assuming steady‐state conditions, since present distributions are likely part of a dynamic steady state that includes forcing on multiple timescales. Further, typically neglected aquifer storage characteristics can strongly control average salinity distributions. This has important implications for managing vulnerable coastal groundwater resources and for calibration of hydrogeological models.more » « less
An official website of the United States government
