Abstract Future increases in the frequency of tidal flooding due to sea level rise (SLR) are likely to affect pore water salinities in coastal aquifers. In this study, we investigate the impact of increased tidal flooding frequency on salinity and flow dynamics in coastal aquifers using numerical variable‐density variably‐saturated groundwater flow and salt transport models. Short (sub‐daily) and long (decadal) period tides are combined with SLR projections to drive continuous 80‐year models of flow and salt transport. Results show that encroaching intertidal zones lead to both periodic and long‐term vertical salinization of the upper aquifer. Salinization of the upper aquifer due to tidal flooding forces the lower interface seaward, even under SLR. System dynamics are controlled by the interplay between SLR and long period tidal forcing associated with perigean spring tides and the 18.6‐year lunar nodal cycle. Periodic tidal flooding substantially enhances intertidal saltwater‐freshwater mixing, resulting in a 6‐ to 10‐fold expansion of the intertidal saltwater‐freshwater mixing area across SLR scenarios. The onset of the expansion coincides with extreme high water levels resulting from lunar nodal cycling of tidal constituent amplitudes. The findings are the first to demonstrate the combined effects of gradual SLR and short and long period tides on aquifer salinity distributions, and reveal competing influences of SLR on saltwater intrusion. The results are likely to have important implications for coastal ocean chemical fluxes and groundwater resources as tidal flooding intensifies worldwide.
more »
« less
Dynamic Steady State in Coastal Aquifers Is Driven by Multi‐Scale Cyclical Processes, Controlled by Aquifer Storativity
Abstract Coastal aquifers supply freshwater to nearly half the global population, yet they are threatened by salinization. Salinities are typically estimated assuming steady‐state, neglecting the effect of cyclical forcings on average salinity distributions. Here, numerical modeling is used to test this assumption. Multi‐scale fluctuations in sea level (SL) are simulated, from tides to glacial cycles. Results show that high‐frequency fluctuations alter average salinities compared with the steady‐state distribution produced by average SL. Low‐frequency forcing generates discrepancies between present‐day salinities estimated with and without considering the cyclical forcing due to overshoot effects. This implies that salinities in coastal aquifers may be erroneously estimated when assuming steady‐state conditions, since present distributions are likely part of a dynamic steady state that includes forcing on multiple timescales. Further, typically neglected aquifer storage characteristics can strongly control average salinity distributions. This has important implications for managing vulnerable coastal groundwater resources and for calibration of hydrogeological models.
more »
« less
- PAR ID:
- 10444653
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 49
- Issue:
- 11
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The Northeast U.S. continental shelf (NEUS) is a highly productive and economically important region that has undergone substantial changes in recent years. Warming exceeds the global average and several episodes of anomalously warm, sustained temperatures have had profound impacts on regional fisheries. A majority of recent research studies focused on the analysis of temperature; however, salinity can serve as a valuable tracer as well. With now more than a decade of remote‐sensing sea surface salinity data, we shed new light onto salinity variability in the region with focus on the Mid‐Atlantic Bight and assess its role for modulating stratification on the shelf using historical hydrographic data. Local river discharge drives decreasing salinities not only in spring and summer on the shelf but also in the Slope Sea. In spring, fresher water aids the build‐up of stratification and a low salinity surface layer extends to the shelf break above the pycnocline by the beginning of summer. An observed salinification in the fall is linked to offshore forcing over the slope associated with the presence of Warm Core Rings. Coherent low‐frequency salinity variability is found over the slope and shelf, highlighting that shelf conditions are significantly impacted by offshore variability. Conditions on the NEUS in 2015 were characterized by anomalously high salinities, associated with a northerly position of the Gulf Stream. A freshening between 2015 and 2021, is in agreement with increased river cumulative discharge as well as lower offshore salinities. Overall, salinity serves as a valuable additional tracer of these multi‐variate processes.more » « less
-
Abstract Models project that climate change is increasing the frequency of severe storm events such as hurricanes. Hurricanes are an important driver of ecosystem structure and function in tropical coastal and island regions and thus impact tropical forest carbon (C) cycling. We used the DayCent model to explore the effects of increased hurricane frequency on humid tropical forest C stocks and fluxes at decadal and centennial timescales. The model was parameterized with empirical data from the Luquillo Experimental Forest (LEF), Puerto Rico. The DayCent model replicated the well-documented cyclical pattern of forest biomass fluctuations in hurricane-impacted forests such as the LEF. At the historical hurricane frequency (60 years), the dynamic steady state mean forest biomass was 80.9 ± 0.8 Mg C/ha during the 500-year study period. Increasing hurricane frequency to 30 and 10 years did not significantly affect net primary productivity but resulted in a significant decrease in mean forest biomass to 61.1 ± 0.6 and 33.2 ± 0.2 Mg C/ha, respectively (p < 0.001). Hurricane events at all intervals had a positive effect on soil C stocks, although the magnitude and rate of change of soil C varied with hurricane frequency. However, the gain in soil C stocks was insufficient to offset the larger losses from aboveground biomass C over the time period. Heterotrophic respiration increased with hurricane frequency by 1.6 to 4.8%. Overall, we found that an increasing frequency of tropical hurricanes led to a decrease in net ecosystem production by − 0.2 ± 0.08 Mg C/ha/y to − 0.4 ± 0.04 Mg C/ha/y for 30–10-year hurricane intervals, respectively, significantly increasing the C source strength of this forest. These results demonstrate how changes in hurricane frequency can have major implications for the tropical forest C cycle and limit the potential for this ecosystem to serve as a net C sink.more » « less
-
Abstract Low‐elevation coastal areas are increasingly vulnerable to seawater flooding as sea levels rise and the frequency and intensity of large storms increase with climate change. Seawater flooding can lead to the salinization of fresh coastal aquifers by vertical saltwater intrusion (SWI). Vertical SWI is often overlooked in coastal zone threat assessments despite the risk it poses to critical freshwater resources and salt‐intolerant ecosystems that sustain coastal populations. This review synthesizes field and modeling approaches for investigating vertical SWI and the practical and theoretical understanding of salinization and flushing processes obtained from prior studies. The synthesis explores complex vertical SWI dynamics that are influenced by density‐dependent flow and oceanic, hydrologic, geologic, climatic, and anthropogenic forcings acting on coastal aquifers across spatial and temporal scales. Key knowledge gaps, management challenges, and research opportunities are identified to help advance our understanding of the vulnerability of fresh coastal groundwater. Past modeling studies often focus on idealized aquifer systems, and thus future work could consider more diverse geologic, climatic, and topographic environments. Concurrent field and modeling programs should be sustained over time to capture interactions between physical processes, repeated salinization and flushing events, and delayed aquifer responses. Finally, this review highlights the need for improved coordination and knowledge translation across disciplines (e.g., coastal engineering, hydrogeology, oceanography, social science) to gain a more holistic understanding of vertical SWI. There also needs to be more education of communities, policy makers, and managers to motivate societal action to address coastal groundwater vulnerability in a changing climate.more » « less
-
The frequency distributions can characterize the population-potential landscape related to the stability of ecological states. We illustrate the practical utility of this approach by analyzing a forest–savanna model. Savanna and forest states coexist under certain conditions, consistent with past theoretical work and empirical observations. However, a grassland state, unseen in the corresponding deterministic model, emerges as an alternative quasi-stable state under fluctuations, providing a theoretical basis for the appearance of widespread grasslands in some empirical analyses. The ecological dynamics are determined by both the population-potential landscape gradient and the steady-state probability flux. The flux quantifies the net input/output to the ecological system and therefore the degree of nonequilibriumness. Landscape and flux together determine the transitions between stable states characterized by dominant paths and switching rates. The intrinsic potential landscape admits a Lyapunov function, which provides a quantitative measure of global stability. We find that the average flux, entropy production rate, and free energy have significant changes near bifurcations under both finite and zero fluctuation. These may provide both dynamical and thermodynamic origins of the bifurcations. We identified the variances in observed frequency time traces, fluctuations, and time irreversibility as kinematic measures for bifurcations. This framework opens the way to characterize ecological systems globally, to uncover how they change among states, and to quantify the emergence of quasi-stable states under stochastic fluctuations.more » « less
An official website of the United States government
