skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 1, 2026

Title: An Optimized Probe‐Based qPCR Assay for the Detection and Monitoring of the Invasive Lionfish ( Pterois volitans ) in the Atlantic
ABSTRACT The Indo‐Pacific lionfish,Pterois volitans,is an invasive species in the western Atlantic. Since its introduction to Florida in the early 1980s, populations have surged with lionfish now found from North Carolina to Venezuela. As their range expands, these generalist predators threaten native fauna, and while they are primarily a marine species, their tolerance for low salinity conditions may allow them to expand into sensitive estuarine habitats undetected. Traditional approaches for tracking invasive species such as direct observation or trapping are impractical over large spatial scales, making environmental DNA (eDNA) an attractive alternative. Molecular assays, such as those employing quantitative polymerase chain reaction (qPCR), amplify low copy number DNA fragments in environmental samples and are increasingly employed as a complement to traditional methods for the detection of invasive species. Currently, there is one published PCR assay for the detection of lionfish eDNA. However, the specificity of this assay is unverified, and the critical performance parameters limit of detection (LOD) and limit of quantification (LOQ) have not been established. Here we evaluate the efficacy of this assay and show that it is likely to result in false negatives in the western Atlantic. As an alternative, we developed a new TaqMan probe‐based qPCR assay that is species‐specific forP. volitansand highly sensitive with a LOD of 12 copies per reaction and a LOQ of 598 copies per reaction. While our assay does not amplify the closely relatedP. miles, which was also introduced in the western Atlantic, the low prevalence of this species in the invasive population means our assay is effective for most monitoring purposes. We conclude that our assay is a robust method for the detection of lionfish and can be employed in any habitat, offering new opportunities for controlling the spread of invasive lionfish.  more » « less
Award ID(s):
2149866
PAR ID:
10609871
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Environmental DNA
Volume:
7
Issue:
2
ISSN:
2637-4943
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Studying declining and rare species is inherently challenging, particularly when the cause of rarity is emerging infectious diseases (EIDs). Tracking changes in the distribution of pathogens that cause EIDs, and the species made scarce by them, is necessary for conservation efforts, but it is often a time and resource intensive task. Here, we demonstrate how using environmental DNA (eDNA) to detect rare species—and the pathogens that threaten them—can be a powerful tool to understand disease dynamics and develop effective conservation strategies. Amphibian populations around the world have undergone rapid declines and extinctions due to the emerging fungal pathogen,Batrachochytrium dendrobatidis(Bd). We developed and validated a qPCR assay using eDNA sampling methods for some of the most imperiled amphibian species, harlequin frogs (Atelopus varius,Atelopus zeteki,andAtelopus chiriquiensis), and applied this assay in concert with a standard qPCR assay forBdin rainforest streams of Panamá. We confirmed the presence ofAtelopusat sampling locations across three regions. In addition, we used genomic analysis of eDNA samples to show thatBdin Panamá falls within the Global Panzootic Lineage, a lineage associated with disease‐induced declines. We detectedBdDNA in most of our historic sites, and its concentration in water samples correlated with stream characteristics and the pathogen load of the local amphibian community. These results suggest that some populations ofAtelopuspersist in their historic localities. They also show how eDNA analysis can be effectively used for monitoring species presence, pathogen concentrations, and the distribution and spread of pathogen lineages. EIDs are a growing threat to endangered species around the world. Simultaneous detection of rare and declining host species and their pathogens with eDNA will help to provide key insights for effective conservation management. 
    more » « less
  2. Abstract Copy number variation (CNV) is a major part of the genetic diversity segregating within populations, but remains poorly understood relative to single nucleotide variation. Here, we report on atRNAligase gene (Migut.N02091;RLG1a) exhibiting unprecedented, and fitness‐relevant,CNVwithin an annual population of the yellow monkeyflowerMimulus guttatus.RLG1a variation was associated with multiple traits in pooled population sequencing (PoolSeq) scans of phenotypic and phenological cohorts. Resequencing of inbred lines revealed intermediate‐frequency three‐copy variants ofRLG1a (trip+;5/35 = 14%), andtrip+lines exhibited elevatedRLG1a expression under multiple conditions.trip+carriers, in addition to being over‐represented in late‐flowering and large‐flowered PoolSeq populations, flowered later under stressful conditions in a greenhouse experiment (p < 0.05). In wild population samples, we discovered an additional rareRLG1a variant (high+) that carries 250–300 copies ofRLG1a totalling ~5.7 Mb (20–40% of a chromosome). In the progeny of ahigh+carrier, Mendelian segregation of diagnostic alleles andqPCR‐based copy counts indicate thathigh+is a single tandem array unlinked to the single‐copyRLG1a locus. In the wild,high+carriers had highest fitness in two particularly dry and/or hot years (2015 and 2017; bothp < 0.01), while single‐copy individuals were twice as fecund as eitherCNVtype in a lush year (2016:p < 0.005). Our results demonstrate fluctuating selection onCNVs affecting phenological traits in a wild population, suggest that planttRNAligases mediate stress‐responsive life‐history traits, and introduce a novel system for investigating the molecular mechanisms of gene amplification. 
    more » « less
  3. Societal Impact StatementThe invasive speciesS. alternifloraandP. australisare fast growing coastal wetland plants sequestering large amounts of carbon in the soil and protect coastlines against erosion and storm surges. In this global analysis, we found thatSpartinaandPhragmitesincrease methane but not nitrous oxide emissions, withPhragmiteshaving a lesser effect. The impact of the invasive species on emissions differed greatly among different types of native plant groups, providing valuable information to managers and policymakers during coastal wetland planning and restoration efforts. Further, our estimated net emissions per wetland plant group facilitate regional and national blue carbon estimates. SummaryGlobally,Spartina alternifloraandPhragmites australisare among the most pervasive invasive plants in coastal wetland ecosystems. Both species sequester large amounts of atmospheric carbon dioxide (CO2) and biogenic carbon in soils but also support production and emission of methane (CH4). In this study, we investigated the magnitude of their net greenhouse gas (GHG) release from invaded and non‐invaded habitats.We conducted a meta‐analysis of GHG fluxes associated with these two species and related soil carbon content and plant biomass in invaded coastal wetlands.Our results show that both invasive species increase CH4fluxes compared to uninvaded coastal wetlands, but they do not significantly affect CO2and N2O fluxes. The magnitude of emissions fromSpartinaandPhragmitesdiffers among native habitats. GHG fluxes, soil carbon and plant biomass ofSpartina‐invaded habitats were highest compared to uninvaded mudflats and succulent forb‐dominated wetlands, while being lower compared to uninvaded mangroves (except for CH4).This meta‐analysis highlights the important role of individual plant traits as drivers of change by invasive species on plant‐mediated carbon cycles. 
    more » « less
  4. Lobophorais a common tropical to temperate genus of brown algae found in a plethora of habitats including shallow and deep‐water coral reefs, rocky shores, mangroves, seagrass beds, and rhodoliths beds. Recent molecular studies have revealed thatLobophoraspecies diversity has been severely underestimated. Current estimates of the species numbers range from 100 to 140 species with a suggested center of diversity in the Central Indo‐Pacific. This study used three molecular markers (cox3,rbcL,psbA), different single‐marker species delimitation methods (GMYC,ABGD,PTP), and morphological evidence to evaluateLobophoraspecies diversity in the Western Atlantic and the Eastern Pacific oceans.Cox3 provided the greatest number of primary species hypotheses(PSH), followed byrbcL and thenpsbA.GMYCspecies delimitation analysis was the most conservative across all three markers, followed byPTP, and then ABGD. The most informative diagnostic morphological characters were thallus thickness and number of cell layers in both the medulla and the dorsal/ventral cortices. Following a consensus approach, 14 distinctLobophoraspecies were identified in the Western Atlantic and five in the Eastern Pacific. Eight new species from these two oceans were herein described:L. adpressasp. nov.,L. cocoensissp. nov.,L. colombianasp. nov.,L. crispatasp. nov.,L. delicatasp. nov.,L. dispersasp. nov.,L. panamensissp. nov., andL. tortugensissp. nov. This study showed that the best approach to confidently identifyLobophoraspecies is to analyzeDNAsequences (preferablycox3 andrbcL) followed by comparative morphological and geographical assessment. 
    more » « less
  5. Dimethylsulfoniopropionate (DMSP) is produced by many species of marine phytoplankton and has been reported to provide a variety of beneficial functions including osmoregulation. Dinoflagellates are recognized as majorDMSPproducers; however, accumulation has been shown to be highly variable in this group. We explored the effect of hyposaline transfer inGambierdiscus belizeanusbetween ecologically relevant salinities (36 and 31) onDMSPaccumulation, Chla, cell growth, and cell volume, over 12 d. Our results showed thatG. belizeanusmaintained an intracellularDMSPcontent of 16.3 pmol cell−1and concentration of 139 mMin both salinities. Although this intracellular concentration was near the median reported for other dinoflagellates, the cellular content achieved byG. belizeanuswas the highest reported of any dinoflagellate thus far, owing mainly to its large size.DMSPlevels were not significantly affected by salinity treatment but did change over time during the experiment. Salinity, however, did have a significant effect on the ratio ofDMSP:Chla, suggesting that salinity transfer ofG. belizeanusinduced a physiological response other thanDMSPadjustment. A survey ofDMSPcontent in a variety ofGambierdiscusspecies and strains revealed relatively highDMSPconcentrations (1.0–16.4 pmol cell−1) as well as high intrageneric and intraspecific variation. We conclude that, althoughDMSPmay not be involved in long‐term (3–12 d) osmoregulation in this species,G. belizeanusand otherGambierdiscusspecies may be important contributors toDMSPproduction in tropical benthic microalgal communities due to their large size and high cellular content. 
    more » « less