Abstract Post‐earthquake reconnaissance survey of structural damage is an effective way of documenting and understanding the impact of earthquakes on structures. This article aims at providing an efficient data‐based framework that reduces the required time for reconnaissance missions and predicts the damage intensities for every building in the affected region. We hypothesize that a joint selection of necessary structural and earthquake parameters along with sparse damage observations are sufficient to train a supervised learning algorithm and accurately infer the damage for other buildings in the region. Gaussian process regression is employed to prove the hypothesis for probabilistic inference of different damage indices. The algorithm performs efficiently by selecting a set of diverse and representative buildings for damage observations using K‐medoids clustering. To validate the hypothesis and the proposed method, the algorithm framework is implemented on two severe earthquake simulation testbeds. The impacts of different building and ground motion variables on the damage inference performance are discussed. Furthermore, the effectiveness of observation sampling by clustering in the post‐earthquake damage inference is compared with random sampling.
more »
« less
This content will become publicly available on May 16, 2026
D-Optimal Orienteering for Post-Earthquake Reconnaissance Planning
Routing a Vehicle to Collect Data After an Earthquake In the immediate aftermath of a major earthquake, it is crucial to quickly and accurately assess structural damage throughout the region. It is especially important to identify buildings that have become unsafe in order to prioritize evacuation efforts. Only a very small number of building inspections can be feasibly performed in a narrow time frame; however, their results can then be combined with other data sources to predict damage at other locations that were not inspected. In “D-Optimal Orienteering for Postearthquake Reconnaissance Planning,” Wang, Xie, Ryzhov, Marković, and Ou present a novel nonlinear integer program that combines vehicle routing with a statistical objective, the goal being to maximize data quality. An exact method based on row and column generation is developed to solve problems with up to 200 buildings. The approach is validated in a realistic case study using real-world building data obtained from a state-of-the-art earthquake simulator.
more »
« less
- Award ID(s):
- 2246417
- PAR ID:
- 10609876
- Publisher / Repository:
- INFORMS
- Date Published:
- Journal Name:
- Operations Research
- ISSN:
- 0030-364X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
On February 6, 2023, a major earthquake of 7.8 magnitude and its aftershocks caused widespread destruction in Turkey and Syria, causing more than 55,000 deaths, displacing 3 million people in Turkey and 2.9 million in Syria, and destroying or damaging at least 230,000 buildings. Our research presents detailed city-scale maps of landslides, liquefaction, and building damage from this earthquake, utilizing a novel variational causal Bayesian network. This network integrates InSAR-derived change detection with new empirical ground failure models and building footprints, enabling us to (1) rapidly estimate large-scale building damage, landslides, and liquefaction from remote sensing data, (2) jointly attribute building damage to landslides, liquefaction, and shaking, (3) improve regional landslide and liquefaction predictions impacting infrastructure, and (4) simultaneously identify damage degrees in thousands of buildings. For city-scale, building-by-building damage assessments, we use building footprints and satellite imagery with a spatial resolution of approximately 30 meters. This allows us to achieve a high resolution in damage assessment, both in timeliness and scale, enabling damage classification at the individual building level within days of the earthquake. Our findings detail the extent of building damage, including collapses, in Hatay, Osmaniye, Adıyaman, Gaziantep, and Kahramanmaras. We classified building damages into five categories: no damage, slight, moderate, partial collapse, and collapse. We evaluated damage estimates against preliminary ground-truth data reported by the civil authorities. Our results demonstrate the accuracy of our classification system, as evidenced by the area under the curve (AUC) scores on the receiver operating characteristic (ROC) curve, which ranged from 0.9588 to 0.9931 across different damage categories and regions. Specifically, our model achieved an AUC of 0.9931 for collapsed buildings in the Hatay/Osmaniye area, indicating a 99.31% probability that the model will rank a randomly chosen collapsed building higher than a randomly chosen non-collapsed building. These accurate, building-specific damage estimates, with greater than 95% classification accuracy across all categories, are crucial for disaster response and can aid agencies in effectively allocating resources and coordinating efforts during disaster recovery.more » « less
-
The system under investigation is a 40 story building. Real-time hybrid simulations (RTHSs) were performed on the building, where the structure is separately subjected to multi-natural hazards consisting of a 110 mph sustained wind storm and 43 second earthquake. Nonlinear viscous dampers between the outrigger truss and perimeter columns are placed at stories 20th and 30th. The outcome of the tests was to assess the ability of the damped outrigger system to suppress undesirable floor wind accelerations and reduce earthquake story drift and damage. The data collected from the tests can be reused by replaying the real-time hybrid simulation offline, where all of the response quantities of the building can be retrieved. The data can be reused to study the response of tall buildings with outriggers and passive dampers subjected to wind and earthquake natural hazards.more » « less
-
The extent of loss in a seismic hazard can be moderated with on-time allocation of funds and initiation of recovery tasks. Among various examinations conducted following the hazard, buildings damages are assessed as part of the reconnaissance survey to learn and document the impact of the earthquake on structures. The results of the survey are used in financial aid estimation, which is crucial for the community rapid recovery acts after the hazard. Due to the urgent need for this information, the amount of information gained per unit of time should be optimized. This article aims at answering the question of how to maximize the information gain in the presence of resource constraints by directing the efforts of a reconnaissance surveying team. A data-driven method is proposed that actively learns the patterns of damage and recommends the most informative buildings to be inspected while considering the resource limitations. The framework utilizes an efficient active learning method based on mutual information and developed for Gaussian process regression (GPR) to identify the information-rich cases. To assess the contribution of information gain and resource allocation in the overall outcome of the damage inference, two simulated earthquake testbeds are studied. It is shown that in a co-optimization approach, damage labels of the majority of buildings can be accurately predicted after 1 week of damage inspections.more » « less
-
A series of shake table tests were recently conducted on full-scale 10-story and 6-story mass timber buildings at the 6-DOF Large High-Performance Outdoor Shaking Table facility at the University of California San Diego. Stairs, providing the primary egress in and out of a building during and after an earthquake event, were incorporated in each of these building test programs. To ensure they support the immediate recovery of building function, a variety of drift-release details were incorporated. Previous earthquake events and experimental studies have shown that stairs are among the most drift-sensitive nonstructural systems and are prone to damage, therefore relieving interstory drifts is paramount to improving their performance. To this end, the designed drift-release connections within the stairs considered the test buildings response during earthquake motions scaled at various hazard levels with expected minor and repairable damage under large earthquake loading. This paper provides an overview of the shake table test programs from the perspective of the design and performance of resilient steel stairs.more » « less
An official website of the United States government
