During extreme events such as earthquakes, stairs are the primary means of egress in and out of buildings. Therefore, understanding the seismic response of this non-structural system is essential. Past earthquake events have shown that stairs with a flight to landing fixed connection are prone to damage due to the large interstory drift demand they are subjected to. To address this, resilient stair systems with drift-compatible connections have been proposed. These stair systems include stairs with fixed-free connections, sliding-slotted connections, and related drift-compatible detailing. Despite the availability of such details in design practice, they have yet to be implemented into full-scale, multi-floor building test programs. To conduct a system-level experimental study using true-to-field boundary conditions of these stair systems, several stair configurations are planned for integration within the NHERI TallWood 10-story mass timber building test program. The building is currently under construction at the UC San Diego 6-DOF Large High-Performance Outdoor Shake Table (LHPOST6). To facilitate pre-test investigation of the installed stair systems a comprehensive finite element model of stairs with various boundary conditions has been proposed and validated via comparison with experimental data available on like-detailed single-story specimens tested at the University of Nevada, Reno (UNR). The proposed modelling approach was used to develop the finite element model of a single-story, scissor-type, stair system with drift-compatible connections to be implemented in the NHERI TallWood building. This paper provides an overview, and pre-test numerical evaluation of the planned stair testing program within the mass timber shake table testing effort.
more »
« less
Detailing for seismically resilient steel stair systems: validation in the mass timber (10 and 6-story) programs
A series of shake table tests were recently conducted on full-scale 10-story and 6-story mass timber buildings at the 6-DOF Large High-Performance Outdoor Shaking Table facility at the University of California San Diego. Stairs, providing the primary egress in and out of a building during and after an earthquake event, were incorporated in each of these building test programs. To ensure they support the immediate recovery of building function, a variety of drift-release details were incorporated. Previous earthquake events and experimental studies have shown that stairs are among the most drift-sensitive nonstructural systems and are prone to damage, therefore relieving interstory drifts is paramount to improving their performance. To this end, the designed drift-release connections within the stairs considered the test buildings response during earthquake motions scaled at various hazard levels with expected minor and repairable damage under large earthquake loading. This paper provides an overview of the shake table test programs from the perspective of the design and performance of resilient steel stairs.
more »
« less
- Award ID(s):
- 2120683
- PAR ID:
- 10632053
- Publisher / Repository:
- 18th U.S.-Japan-New Zealand Workshop on the Improvement of Structural Engineering and Resilience
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Advancing the seismic resilience of building systems is an active area of research in earthquake engineering. Ensuring safe egress in and out of buildings during extreme events, such as an earthquake, is essential to supporting this effort. To this end, understanding the seismic response of stairs facilitates the robust design of egress systems to ensure they can remain operable after an earthquake. From prior earthquake events and physical experiments, it is understood that stairs with a flight to landing fixed connection at multiple levels within a building are prone to damage. In addition, the stair system with flight to landing fixed attachments may affect the dynamic behavior of the building. To accommodate seismic inter‐story drifts, a kinematically free connection between the stairs and landing has been proposed. Herein this connection is referred to as adrift‐compatiblestair connection. To investigate and aid in the design of such a connection, a unique set of shake table experiments were conducted at the University of Nevada, Reno. In this paper, an overview of these tests is presented, and a high‐fidelity finite element model of the tested stair system is used to predict the responses measured during these experiments. Developed in Abaqus, the robustness of the modeled stair unit is investigated considering a variety of contrasting connections, namely, drift‐compatible connections, fixed ends and one end fixed and the other free. Results from these numerical simulations offer guidance towards development of simplified models of multi‐level stair subsystems. Such models are needed when investigating seismic resilience of building systems across a wider range of hazard levels. Furthermore, best practices observed utilizing the models developed and evaluated herein against experimental data will be useful for subsequent analysis of larger stair tower models, such as the 10‐story stair system implemented in the NHERI Tall Wood mass timber building with post‐tensioned rocking walls, conducted in 2023 at the UC San Diego Large High‐Performance Outdoor Shake Table.more » « less
-
To advance understanding of the multihazard performance of midrise cold-formed steel (CFS) construction, a unique multidisciplinary experimental program was conducted on the Large High-Performance Outdoor Shake Table (LHPOST) at the University of California, San Diego (UCSD). The centerpiece of this project involved earthquake and live fire testing of a full-scale 6-story CFS wall braced building. Initially, the building was subjected to seven earthquake tests of increasing motion intensity, sequentially targeting service, design, and maximum credible earthquake (MCE) demands. Subsequently, live fire tests were conducted on the earthquake-damaged building at two select floors. Finally, for the first time, the test building was subjected to two postfire earthquake tests, including a low-amplitude aftershock and an extreme near-fault target MCE-scaled motion. In addition, low-amplitude white noise and ambient vibration data were collected during construction and seismic testing phases to support identification of the dynamic state of the building system. This paper offers an overview of this unique multihazard test program and presents the system-level structural responses and physical damage features of the test building throughout the earthquake-fire-earthquake test phases, whereas the component-level seismic behavior of the shear walls and seismic design implications of CFS-framed building systems are discussed in a companion paper.more » « less
-
Advancements in materials, components, and building systems over the past decade have enabled the construction of taller mass timber structures, creating new opportunities for seismic design in mid- and high-rise buildings. This paper presents a systematic comparison of two full-scale shake table test programs-the 10-story NHERT TallWood and the 6-story NHERT Converging Design both conducted at the University of California, San Diego (UCSD) Large High-Performance Outdoor Shake Table (LHPOST). These projects aimed to develop and validate seismic design approaches for wood buildings in high seismic regions. Both structures employed a self-centering mass timber rocking wall system with distributed energy dissipation provided by U-shaped Flexural Plates (UFPs), enabling direct comparison of structural response and design considerations across different building heights. Despite ongoing innovations, many tall timber buildings still rely on concrete cores or steel braced frames for lateral resistance due to a limited number of code- approved timber systems and an industry preference for traditional solutions. This comparative study highlights the performance of timber-based lateral systems under seismic loading and supports their broader adoption in resilient, mid-and high-rise construction.more » « less
-
A test program was designed to answer if it is possible to design and build a tall mass timber building with resilient performance against large earthquakes. Resilient performance was defined as to receive no structural damage under design level earthquake, and only easily repairable damage under maximum considered earthquake. The system under investigation is a full-scale 10-story mass timber building designed and constructed with many innovative systems and details including post-tensioned wood rocking wall lateral systems. Non-structural components on the building were also tested to ensure their damage in all earthquakes are repairable and will not significantly delay the functional recovery of the building after large earthquakes. The tests were conducted using multi-directional ground motion excitations ranging from frequent earthquakes to maximum considered earthquakes. The resultant dataset contains a total of 88 shake table tests and 48 white noise tests conducted on the building at the high-performance outdoor shake table facility in San Diego CA. U.S.A. Data was obtained using over 700 channels of wired sensors installed on the building during the seismic tests, presented in the form of time history of the measured responses. The tall wood building survived all excitations without detectible structural damage. This publication includes detailed documentation on the design and testing of the building, including construction drawing sets. Representative photo and video footage of the test structure during construction and testing are also included. This dataset is useful for researchers and engineers working on mass timber building design and construction in regions of high seismicity.more » « less
An official website of the United States government

