Abstract In designing femoral components, which restore native (i.e., healthy) knee kinematics, the flexion–extension (F-E) axis of the tibiofemoral joint should match that of the native knee. Because the F–E axis is governed by the curvature of the femoral condyles in the sagittal plane, the primary objective was to determine the variation in radii of curvature. Eleven high accuracy three-dimensional (3D) femur models were generated from ultrahigh resolution CT scans. The sagittal profile of each condyle was created. The radii of curvature at 15 deg increments of arc length were determined based on segment circles best-fit to ±15 deg of arc at each increment. Results were standardized to the radius of the best-fit overall circle to 15 deg–105 deg for the femoral condyle having a radius closest to the mean radius. Medial and lateral femoral condyles exhibited multiradius of curvature sagittal profiles where the radius decreased at 30 deg flexion by 10 mm and at 15 deg flexion by 8 mm, respectively. On either side of the decrease, radii of segment circles were relatively constant. Beyond the transition angles where the radii decreased, the anterior-posterior (A-P) positions of the centers of curvature varied 4.8 mm and 2.3 mm for the medial and lateral condyles, respectively. A two-radius of curvature profile approximates the radii of curvature of both native femoral condyles, but the transition angles differ with the transition angle of the medial femoral condyle occurring about 15 deg later in flexion. Owing to variation in A-P positions of centers of curvature, the F-E axis is not strictly fixed in the femur.
more »
« less
This content will become publicly available on August 1, 2026
Improving Femoral Torsion Evaluation in Infants Through Analysis of Variability and Reliability in Two-Dimensional and Three-Dimensional Imaging Measurements of the Femoral Neck Axis
Abstract The femoral neck axis serves as a critical parameter in evaluating hip joint health, particularly in the pediatric population. Commonly used metrics for evaluating femoral torsion, such as the femoral neck-shaft and femoral anteversion angles, rely heavily on precise definitions of the position and orientation of the femoral neck axis. Current measurement methods employing radiographs and performing two-dimensional (2D) measurements on computed tomography (CT) scans are susceptible to errors due to their reliance on reader experience and the inherent limitations in 2D measurements. We hypothesized that utilizing volumetric data would mitigate these errors and enable more accurate and reproducible measurements of the femoral neck axis using the femoral anteversion and femoral neck-shaft angles. To test this hypothesis, we analyzed a historical collection of postmortem infant femoral and pelvic bones (28 hips) aged 0 to 6.5 months, with an average estimated age of 4.68 ± 1.80 months. Our findings revealed an average neck-shaft angle of 128.00 ± 4.92 deg and femoral anteversion angle of 35.56 ± 11.68 deg across all femurs, consistent with literature values. These measurements obtained from volumetric image data were found to be repeatable and reliable compared to conventional methods. Our study suggests that the proposed methodology offers a standardized approach for obtaining repeatable and reproducible measurements, thus potentially enhancing diagnostic accuracy and clinical decision-making in assessing hip developmental conditions in pediatric patients.
more »
« less
- Award ID(s):
- 2238859
- PAR ID:
- 10609884
- Publisher / Repository:
- American Society of Mechanical Engineers Digital Collection
- Date Published:
- Journal Name:
- Journal of Engineering and Science in Medical Diagnostics and Therapy
- Volume:
- 8
- Issue:
- 3
- ISSN:
- 2572-7958
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Background: Slipped capital femoral epiphysis is a prevalent pediatric hip disorder. Recent studies suggest the spine’s sagittal profile may influence the proximal femoral growth plate’s slippage, an aspect not extensively explored. This study utilizes finite element analysis to investigate how various spinopelvic alignments affect shear stress and growth plate slip. Methods: A finite element model was developed from CT scans of a healthy adult male lumbar spine, pelvis, and femurs. The model was subjected to various sagittal alignments through reorientation. Simulations of two-leg stance, one-leg stance, walking heel strike, ascending stairs heel strike, and descending stairs heel strike were conducted. Parameters measured included hip joint contact area, stress, and maximum growth plate Tresca (shear) stress. Findings: Posterior pelvic tilt cases indicated larger shear stresses compared to the anterior pelvic tilt variants except in two leg stance. Two leg stance resulted in decreases in the posterior tilted pelvi variants hip contact and growth plate Tresca stress compared to anterior tilted pelvi, however a combination of posterior pelvic tilt and high pelvic incidence indicated larger shear stresses on the growth plate. One leg stance and heal strike resulted in higher shear stress on the growth plate in posterior pelvic tilt variants compared to anterior pelvic tilt, with a combination of posterior pelvic tilt and high pelvic incidence resulting in the largest shear. Interpretation: Our findings suggest that posterior pelvic tilt and high pelvic incidence may lead to increased shear stress at the growth plate. Activities performed in patients with these alignments may predispose to biomechanical loading that shears the growth plate, potentially leading to slip.more » « less
-
Context : Ultrasound imaging is a clinically feasible tool to assess femoral articular cartilage and may have utility in tracking early knee osteoarthritis development. Traditional assessment techniques focus on measurements at a single location, which can be challenging to adopt for novice raters. Objective : To introduce a novel semiautomated ultrasound segmentation technique and determine the intrarater and interrater reliability of average regional femoral articular cartilage thickness and echo intensity of a novice and expert rater. Design : Descriptive observational study. Setting : Orthopedic clinic. Patients or Other Participants : Fifteen participants (mean [SD]; age 23.5 [4.6] y, height = 172.6 [9.3] cm, mass = 79.8 [15.7] kg) with a unilateral history of anterior cruciate ligament reconstruction participated. Intervention : None. Main Outcome Measures : One rater captured anterior femoral cartilage images of the participants’ contralateral knees using a transverse suprapatellar ultrasound assessment. The total femoral cartilage cross-sectional area of each image was segmented by a novice and expert rater. A novel custom program automatically separated the cartilage segmentations into medial, lateral, and intercondylar regions to determine the cross-sectional area and cartilage length. The average cartilage thickness in each region was calculated by dividing the cross-sectional area by the cartilage length. Echo intensity was calculated as the average gray-scale pixel value of each region. Two-way random effect intraclass correlations coefficient (ICC) for absolute agreement were used to determine the interrater reliability between a novice and expert rater, as well as the intrarater reliability of the novice rater. Results : The novice rater demonstrated excellent intrarater (ICC [ 2,k ] range = .993–.997) and interrater (ICC [ 2,k ] range = .944–.991) reliability with the expert rater of all femoral articular cartilage average thickness and echo intensity regions. Conclusions : The novel semiautomated average cartilage thickness and echo-intensity assessment is efficient, systematic, and reliable between an expert and novice rater with minimal training.more » « less
-
Abstract Laser powder bed fusion (LPBF) was utilized to create a series of aluminum alloy (i.e., AlSi10Mg) 5 mm-diameter support pillars with a fixed height of 5 mm containing varying filet angles and build orientations (i.e., 0 deg, 10 deg, 20 deg, 30 deg, 40 deg, 50 deg, and 60 deg from the normal surface) to determine surface roughness and water wettability effects. From experiments, anisotropic wetting was observed due in part to the surface heterogeneity created by the LPBF process. The powder-sourced AlSi10Mg alloy, typically hydrophobic, exhibited primarily hydrophilic behavior for build angles of 0 deg and 60 deg, a mix of hydrophobic and hydrophilic behavior at build angles of 10 deg and 20 deg, and hydrophobic behavior at 30 deg, 40 deg, and 50 deg build angles. Measured surface roughness, Ra, ranged from 5 to 36 µm and varied based on location. 3D-topography maps were generated, and arithmetic mean heights, Sa, of 15.52–21.71 µm were observed; the anisotropy of roughness altered the wetting behavior, thereby prompting some hydrophilic behavior. Build angles of 30 deg and 40 deg provided for the smoothest surfaces. A significantly rougher surface was found for the 50 deg build angle. This abnormally high roughness is attributed to the melt pool contact angle having maximal capillarity with the surrounding powder bed. In this study, the critical melt pool contact angle was near equal to the build angle, suggesting that a critical build angle exists, which gives rise to pronounced melt pool wetting behavior and increased surface roughness due to enhanced wicking followed by solidification.more » « less
-
Hambleton, J. P. (Ed.)Soil particles that have been deposited through water or air generally align their largest projected surface area normal to the depositional direction, which generates a cross-anisotropic fabric of granular soils. Researchers have used both two-dimensional (2D) and three-dimensional (3D) images to determine scalar fabric parameters of granular soils, including void ratio, coordination number, and average branch vector length. This study aims to evaluate the accuracy and effectiveness of 2D images to characterize fabric in 3D soils based on scalar parameters. The X-ray computed tomography (X-ray CT) is used to reconstruct the 3D volumetric images of three air-pluviated sand specimens, including crushed limestone, Griffin sand, and glass beads. Then, six slices are obtained by vertically cutting the 3D volumetric image in an angle increment of 30 degrees. The 3D and 2D images are analyzed to determine scalar fabric parameters. The results show that coordination numbers and average branch vector lengths computed from 2D images underestimate these values in 3D granular soils. The void ratios computed from 2D images vary a large range depending on slicing directions, which cannot provide reliable fabric characterizations for 3D granular soils.more » « less
An official website of the United States government
