Abstract Civil infrastructure underpins urban receipts of food, energy, and water (FEW) produced in distant watersheds. In this study, we map flows of FEW goods from watersheds of the contiguous United States to major population centers and highlight the critical infrastructure that supports FEW flows. To do this, we draw upon detailed records of agriculture, electricity, and public water supply production and couple them with commodity flow and infrastructure information. We also compare the flows of virtual water embedded in food and energy commodity flows with physical water flows in inter‐basin water transfer projects around the country. We found that the virtual blue water transfers through crops and electricity to major US cities was 53 billion and 8 billion m3in 2017, respectively, while physical interbasin water transfers for crops, electricity, and public supply water averaged 20.8 billion m3. Highways are the primary infrastructure used to import virtual water associated with food and fuel into cities, although waterways and railways are most utilized for long‐distance transport. All of the 204 watersheds in the contiguous US support the food, energy, and/or water supplies of major US cities, with dependencies stretching far beyond each city's borders. Still, most cities source the majority of their FEW and embedded water resources from nearby watersheds. Infrastructure such as water supply dams and inland ports serve as important buffers for both local and supply‐chain sourced water stress. These findings can inform efforts to reduce water resources and infrastructure risks in domestic supply chains.
more »
« less
Drought Impacts to Water Footprints and Virtual Water Transfers of Counties of the United States
Abstract Irrigation is increasingly important to agricultural production and supply chains in the United States. In this study, we seek to understand how irrigation (blue) water footprints of production are spatially distributed and how they differ in drought versus non‐drought years. Similarly, we aim to understand the impact of drought on the irrigation virtually embedded in domestic supply chains and exports. To this end, we quantify the blue water footprints of agricultural products per unit mass produced (Virtual Water Content (VWC)) by surface, groundwater, and groundwater depletion sources, and then trace how this water is embedded in domestic agricultural commodity transfers and exports (Virtual Water Transfers (VWT)) for counties in a drought (2012) and non‐drought (2017) year. Overall, we find that total VWC values are larger in drought than non‐drought conditions across commodity groups, driven by surface water withdrawals. Conversely, VWT is larger in non‐drought than drought, driven by larger commodity mass fluxes during non‐drought. Our results highlight the importance of sustainably managing water resources so that they are available to mitigate the impact of future droughts on agricultural production and supply chains.
more »
« less
- PAR ID:
- 10609989
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Water Resources Research
- Volume:
- 61
- Issue:
- 6
- ISSN:
- 0043-1397
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Through the trade of products and services, cities indirectly depend on distant water sources to function, prosper, and grow. To fully account for indirect (virtual) water dependencies, virtual water flows need to be known along complex supply chains. To this purpose, we build a new environmental multiregional input–output model for U.S. regions. The model is used to quantify the domestic, blue virtual water flows and analyze the water footprints of 69 major U.S. cities. Our results show a large inequality in the urban water consumed for economic production: just 7 out of the 69 cities included in this study account for 35% of the U.S. national water footprint of production. This is due to the production of water‐intensive agricultural products in the metropolitan areas of western cities. The inequality reduces for the urban water footprint of consumption because, through the supply chains of industrialized food sectors, western virtual water is partially transferred to eastern cities as final demand. The water embodied in industrial products and services tends to be higher in western cities than in eastern cities; that is, the water embodied in food services could be several times higher in Los Angeles than in New York City. Trade hub cities attract large inflows of products which are mostly transformed for consumption elsewhere. Thus, the omission of product interdependencies within trade hub cities can increase by several times their water footprints of consumption. Overall, the proposed model is able to enhance subnational estimates of U.S. virtual water flows.more » « less
-
Virtual water describes water embedded in the production of goods and offers meaningful insights about the complex interplay between water, trade, and sustainability. In this Review, we examine the trends, major players, traded products, and key drivers of virtual water trade (VWT). Roughly 20% of water used in global food production is traded virtually rather than domestically consumed. As such, agriculture dominates VWT, with livestock products, wheat, maize, soybean, oil palm, coffee, and cocoa contributing over 70% of total VWT. These products are also driving VWT growth, the volume of which has increased 2.9 times from 1986 to 2022. However, the countries leading VWT contributions (with China, the United States, the Netherlands, Germany, and India, accounting for 34% of the global VWT in 2022) have remained relatively stable over time, albeit with China becoming an increasingly important importer. VWT can mitigate the effects of water scarcity and food insecurity, although there are concerns about the disconnect between consumers and the environmental impacts of their choices, and unsustainable resource exploitation. Indeed, approximately 16% of unsustainable water use and 11% of global groundwater depletion are virtually traded. Future VWT analyses must consider factors such as water renewability, water quality, climate change impacts, and socio-economic implications.more » « less
-
Abstract Understanding the nexus between food, energy, and water systems (FEW) is critical for basins with intensive agricultural water use as they face significant challenges under changing climate and regional development. We investigate the food, energy, and water nexus through a regional hydroeconomic optimization (RHEO) modeling framework. The crop production in RHEO is estimated through a hierarchical regression model developed using a biophysical model, AquaCropOS, forced with daily climatic inputs. Incorporating the hierarchical model within the RHEO also reduces the computation time by enabling parallel programming within the AquaCropOS and facilitates mixed irrigation—rainfed, fully irrigated and deficit irrigation—strategies. To demonstrate the RHEO framework, we considered a groundwater‐dominated basin, South Flint River Basin, Georgia, for developing mixed irrigation strategies over 31 years. Our analyses show that optimal deficit irrigation is economically better than full irrigation, which increases the groundwater pumping cost. Thus, considering deficit irrigation in a groundwater‐dominated basin reduces the water, carbon, and energy footprints, thereby reducing FEW vulnerability. The RHEO also could be employed for analyzing FEW nexus under potential climate change and future regional development scenarios.more » « less
-
The rapid growth of demand in agricultural production has created water scarcity issues worldwide. Simultaneously, climate change scenarios have projected that more frequent and severe droughts are likely to occur. Adaptive water resources management has been suggested as one strategy to better coordinate surface water and groundwater resources (i.e., conjunctive water use) to address droughts. In this study, we enhanced an aggregated water resource management tool that represents integrated agriculture, water, energy, and social systems. We applied this tool to the Yakima River Basin (YRB) in Washington State, USA. We selected four indicators of system resilience and sustainability to evaluate four adaptation methods associated with adoption behaviors in alleviating drought impacts on agriculture under RCP4.5 and RCP 8.5 climate change scenarios. We analyzed the characteristics of four adaptation methods, including greenhouses, crop planting time, irrigation technology, and managed aquifer recharge as well as alternating supply and demand dynamics to overcome drought impact. The results show that climate conditions with severe and consecutive droughts require more financial and natural resources to achieve well-implemented adaptation strategies. For long-term impact analysis, managed aquifer recharge appeared to be a cost-effective and easy-to-adopt option, whereas water entitlements are likely to get exhausted during multiple consecutive drought events. Greenhouses and water-efficient technologies are more effective in improving irrigation reliability under RCP 8.5 when widely adopted. However, implementing all adaptation methods together is the only way to alleviate most of the drought impacts projected in the future. The water resources management tool helps stakeholders and researchers gain insights in the roles of modern inventions in agricultural water cycle dynamics in the context of interactive multi-sector systems.more » « less
An official website of the United States government
