skip to main content


Title: Adaptation of water resources management under climate change
The rapid growth of demand in agricultural production has created water scarcity issues worldwide. Simultaneously, climate change scenarios have projected that more frequent and severe droughts are likely to occur. Adaptive water resources management has been suggested as one strategy to better coordinate surface water and groundwater resources (i.e., conjunctive water use) to address droughts. In this study, we enhanced an aggregated water resource management tool that represents integrated agriculture, water, energy, and social systems. We applied this tool to the Yakima River Basin (YRB) in Washington State, USA. We selected four indicators of system resilience and sustainability to evaluate four adaptation methods associated with adoption behaviors in alleviating drought impacts on agriculture under RCP4.5 and RCP 8.5 climate change scenarios. We analyzed the characteristics of four adaptation methods, including greenhouses, crop planting time, irrigation technology, and managed aquifer recharge as well as alternating supply and demand dynamics to overcome drought impact. The results show that climate conditions with severe and consecutive droughts require more financial and natural resources to achieve well-implemented adaptation strategies. For long-term impact analysis, managed aquifer recharge appeared to be a cost-effective and easy-to-adopt option, whereas water entitlements are likely to get exhausted during multiple consecutive drought events. Greenhouses and water-efficient technologies are more effective in improving irrigation reliability under RCP 8.5 when widely adopted. However, implementing all adaptation methods together is the only way to alleviate most of the drought impacts projected in the future. The water resources management tool helps stakeholders and researchers gain insights in the roles of modern inventions in agricultural water cycle dynamics in the context of interactive multi-sector systems.  more » « less
Award ID(s):
1639458
NSF-PAR ID:
10388673
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Frontiers in Water
Volume:
4
ISSN:
2624-9375
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Frequent droughts, seasonal precipitation, and growing agricultural water demand in the Yakima River Basin (YRB), located in Washington State, increase the challenges of optimizing water provision for agricultural producers. Increasing water storage through managed aquifer recharge (MAR) can potentially relief water stress from single and multi-year droughts. In this study, we developed an aggregated water resources management tool using a System Dynamics (SD) framework for the YRB and evaluated the MAR implementation strategy and the effectiveness of MAR in alleviating drought impacts on irrigation reliability. The SD model allocates available water resources to meet instream target flows, hydropower demands, and irrigation demand, based on system operation rules, irrigation scheduling, water rights, and MAR adoption. Our findings suggest that the adopted infiltration area for MAR is one of the main factors that determines the amount of water withdrawn and infiltrated to the groundwater system. The implementation time frame is also critical in accumulating MAR entitlements for single-year and multi-year droughts mitigation. In addition, adoption behaviors drive a positive feedback that MAR effectiveness on drought mitigation will encourage more MAR adoptions in the long run. MAR serves as a promising option for water storage management and a long-term strategy for MAR implementation can improve system resilience to unexpected droughts. 
    more » « less
  2. Abstract

    Groundwater return flow to streams is important for maintaining aquatic habitat and providing water to downstream users, particularly in irrigated watersheds experiencing water scarcity. However, in many agricultural regions, increased irrigation efficiency has reduced return flows and their subsequent in‐stream benefits. Agricultural managed aquifer recharge (Ag‐MAR)—where artificial recharge is conducted via irrigation canals and agricultural fields—may be a tool to recover these return flows, but implementation is challenged by water supply and water management. Using climate‐driven streamflow simulations, an integrated operations‐hydrology model, and a regional groundwater model, we investigated the potential for Ag‐MAR to recover return flows in the Henrys Fork Snake River, Idaho (USA). We simulated potential Ag‐MAR operations for water years 2023–2052, accounting for both future water supply conditions and local water management rules. We determined that Ag‐MAR operations reduced springtime peak flow at the watershed outlet by 10%–14% after accounting for return flows. Recharge contribution to streamflow peaked in July and November, increasing July–August streamflow by 6%–14% and November–March streamflow by 9%–14%. Furthermore, sites where Ag‐MAR was conducted incidental to flood irrigation had more water available for recharge, compared to sites requiring recharge rights, which are junior in priority to agricultural rights. Mean annual recharge volume for the incidental recharge sites averaged 12% of annual natural streamflow, ranged from 269 to 335 Mm3, and was largely available in April and October. We demonstrate Ag‐MAR can effectively recover groundwater return flows when applied as flood irrigation on agricultural land with senior‐priority water rights.

     
    more » « less
  3. null (Ed.)
    Crop yield depends on multiple factors, including climate conditions, soil characteristics, and available water. The objective of this study was to evaluate the impact of projected temperature and precipitation changes on crop yields in the Monocacy River Watershed in the Mid-Atlantic United States based on climate change scenarios. The Soil and Water Assessment Tool (SWAT) was applied to simulate watershed hydrology and crop yield. To evaluate the effect of future climate projections, four global climate models (GCMs) and three representative concentration pathways (RCP 4.5, 6, and 8.5) were used in the SWAT model. According to all GCMs and RCPs, a warmer climate with a wetter Autumn and Spring and a drier late Summer season is anticipated by mid and late century in this region. To evaluate future management strategies, water budget and crop yields were assessed for two scenarios: current rainfed and adaptive irrigated conditions. Irrigation would improve corn yields during mid-century across all scenarios. However, prolonged irrigation would have a negative impact due to nutrients runoff on both corn and soybean yields compared to rainfed condition. Decision tree analysis indicated that corn and soybean yields are most influenced by soil moisture, temperature, and precipitation as well as the water management practice used (i.e., rainfed or irrigated). The computed values from the SWAT modeling can be used as guidelines for water resource managers in this watershed to plan for projected water shortages and manage crop yields based on projected climate change conditions. 
    more » « less
  4. Abstract

    The Western United States (U.S.) relies heavily on scarce water resources for both ecological services and irrigation. However, the response of irrigation water use during drought is not well documented. Irrigation decision‐making is complex and influenced by human and environmental factors such as water deliveries, crop yields, equipment, labor, crop prices, and climate variability. While few irrigation districts have plans to curtail water deliveries during droughts, water rights, fallowing patterns, crop rotations, and profit expectations also influence irrigation management at the farm scale. This study uses high‐resolution satellite data to examine the response of irrigators to drought by using a novel measure of irrigation management, the Standardized Irrigation Management Index. We assess the state of drought at the field and basin scales in terms of climate and streamflow and analyze the importance of variations in crop price and drought status on decision‐making and water use. We show significant variability in field‐scale response to drought and that crop type, irrigation type, and federal management explain regional and field‐scale differences. The relative influence of climate and prices on crop transitions indicate prices more strongly drive crop planting decisions. The study provides insights into irrigation management during drought, which is crucial for sustainable water supply in the face of the ongoing water supply crisis in the U.S. Southwest.

     
    more » « less
  5. Abstract

    Accumulating evidence on the impact of climate change on droughts, highlights the necessity for developing effective adaptation and mitigation strategies. Changes in future drought risk and severity in Australia are quantified by analyzing nine Coupled Model Intercomparison Project Phase 6 climate models. Historic conditions (1981–2014) and projections for mid-century (2015–2050) and end-century (2051–2100) from four shared socioeconomic pathways (SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5) are examined. Drought events are identified using both the standardized precipitation index and the standardized precipitation evapotranspiration index. The spatial-temporal evolution of droughts is addressed by quantifying the areal extent of regions under moderate, severe and extreme drought from historic to end-century periods. Drought characteristics derived from the models are used to develop severity–duration–frequency curves using an extreme value analysis method based on ordinary events. Under SSP5-8.5, a tenfold increase in the area subject to extreme droughts is projected by the end of the century, while a twofold increase is projected under SSP1-2.6. Increase in extreme droughts frequency is found to be more pronounced in the southern and western regions of Australia. For example, frequency analysis of 12 month duration droughts for the state of South Australia indicates that, under SSP5-8.5, drought severities currently expected to happen on average only once in 100 years could happen as often as once in 3 years by the end of the century, with a 33 times higher risk (from 1% to 33%), while under SSP1-2.6, the increase is fivefold (1%–5%). The significant difference in the increase of drought risk between the two extreme scenarios highlights the urge to reduce greenhouse gases emission in order to avoid extreme drought conditions to become the norm by the end of the century.

     
    more » « less