skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2026

Title: CLAVATA signalling shapes barley inflorescence by controlling activity and determinacy of shoot meristem and rachilla
Abstract The large variety of inflorescence architectures evolved in grasses depends on shape, longevity and determinacy of meristems directing growth of the main and lateral axes. The CLAVATA pathway is known to regulate meristem size and inflorescence architecture in grasses. However, how individual meristem activities are determined and integrated to generate specific inflorescences is not yet understood. We found that activity of distinct meristems in the barley inflorescence is controlled by a signalling pathway comprising the receptor-like kinaseHordeum vulgareCLAVATA1 (HvCLV1) and the secreted CLAVATA3/EMBRYO-SURROUNDING REGION RELATED (CLE)-family peptide FON2-LIKE CLE PROTEIN1 (HvFCP1). HvFCP1 and HvCLV1 interact to promote spikelet formation, but restrict inflorescence meristem and rachilla proliferation.Hvfcp1orHvclv1mutants generate additional rows of spikelets and supernumerary florets from extended rachilla activity.HvFCP1/HvCLV1signalling coordinates meristem activity through regulation of trehalose-6-phosphate levels. Our discoveries outline a path to engineer inflorescence architecture via specific regulation of distinct meristem activities.  more » « less
Award ID(s):
2210431
PAR ID:
10610142
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature
Date Published:
Journal Name:
Nature Communications
Volume:
16
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Inflorescence architecture in cereal crops directly impacts yield potential through regulation of seed number and harvesting ability. Extensive architectural diversity found in inflorescences of grass species is due to spatial and temporal activity and determinacy of meristems, which control the number and arrangement of branches and flowers, and underlie plasticity. Timing of the floral transition is also intimately associated with inflorescence development and architecture, yet little is known about the intersecting pathways and how they are rewired during development. Here, we show that a single mutation in a gene encoding an AP1/FUL-like MADS-box transcription factor significantly delays flowering time and disrupts multiple levels of meristem determinacy in panicles of the C4 model panicoid grass, Setaria viridis. Previous reports of AP1/FUL-like genes in cereals have revealed extensive functional redundancy, and in panicoid grasses, no associated inflorescence phenotypes have been described. In S. viridis, perturbation of SvFul2, both through chemical mutagenesis and gene editing, converted a normally determinate inflorescence habit to an indeterminate one, and also repressed determinacy in axillary branch and floral meristems. Our analysis of gene networks connected to disruption of SvFul2 identified regulatory hubs at the intersection of floral transition and inflorescence determinacy, providing insights into the optimization of cereal crop architecture. 
    more » « less
  2. SUMMARY CLAVATA3/EMBRYO SURROUNDING REGION (CLE) peptides are 12–13 amino acid‐long peptides that serve as positional signals in plants. The core CLE signaling module consists of a CLE peptide and a leucine‐rich repeat receptor‐like kinase, but in flowering plants, WUSCHEL‐RELATED HOMEOBOX (WOX) transcription factors are also incorporated to form negative feedback loops that regulate stem cell maintenance in the shoot and root. It is not known whenWOXgenes were co‐opted into CLE signaling pathways, only that mosses and liverworts do not require WOX for CLE‐regulated stem cell activities. We identified 11 CLE‐encoding genes in the Ceratopteris genome, including one (CrCLV3) most similar to shoot meristem CLE peptide CLAVATA3. We performed the first functional characterization of a fern CLE using techniques including RNAi knockdown and synthetic peptide dosage. We found that CrCLV3 promotes cell proliferation and stem cell identity in the gametophyte meristem. Importantly, we provide evidence for CrCLV3 regulation of theWOXgeneCrWOXAduring the developmental stage when female gametangium formation begins. These discoveries open a new avenue for CLE peptide research in the fern and clarify the evolutionary timeline of CLE‐WOX signaling in land plants. 
    more » « less
  3. SUMMARY WUSCHEL (WUS) is transcription factor vital for stem cell proliferation in plant meristems. In maize,ZmWUS1is expressed in the inflorescence meristem, including the central zone, the reservoir of stem cells.ZmWUS1overexpression in theBarren inflorescence3mutant leads to defects in inflorescence development. Here, single-cell ATAC-seq analysis shows thatZmWUS1overexpression alters chromatin accessibility throughout the central zone. The CAATAATGC motif, a known homeodomain recognition site, is predominantly observed in the regions with increased chromatin accessibility suggesting ZmWUS1 is an activator in the central zone. Regions with decreased chromatin accessibility feature various motifs and are adjacent toAUXIN RESPONSE FACTORgenes, revealing negative regulation of auxin signaling in the central zone. DAP-seq of ZmWUS1 identified the TGAATGAA motif, abundant in epidermal accessible chromatin compared to the central zone. These findings highlight ZmWUS1’s context-dependent mechanisms for stem cell maintenance in the inflorescence meristem. 
    more » « less
  4. ABSTRACT The formation of the plant body proceeds in a sequential post-embryonic manner through the action of meristems. Tightly coordinated meristem regulation is required for development and reproductive success, eventually determining yield in crop species. In maize, the REL2 family of transcriptional corepressors includes four members, REL2, RELK1 (REL2-LIKE1), RELK2, and RELK3. In a screen forrel2enhancers, we identified shorter double mutants with enlarged female inflorescence meristems (IMs) carrying mutations inRELK1. Expression and genetic analysis indicate thatREL2andRELK1cooperatively regulate female IM development by controlling genes involved in redox balance, hormone homeostasis, and differentiation, ultimately tipping the meristem toward an environment favorable to expanded expression of theZmWUSCHEL1gene, a key stem-cell promoting transcription factor. We further demonstrate thatRELKgenes have partially redundant yet diverse functions in the maintenance of various meristem types during development. By exploiting subtle increases in ear IM size inrel2heterozygous plants, we also show that extra rows of kernels are formed across a diverse set of F1 hybrids. Our findings reveal that the REL2 family maintains development from embryonic initiation to reproductive growth and can potentially be harnessed for increasing seed yield in a major crop species. One sentence summaryREL2-RELKs fine tune hormone and chemical cues to prevent expanded expression of ZmWUSCHEL1 in maize inflorescence meristems, and can potentially be harnessed for increasing seed yield in hybrids. 
    more » « less
  5. ABSTRACT A fascinating feature of land plants is their ability to continually initiate new tissues and organs throughout their lifespan, driven by a pool of pluripotent stem cells located in meristems. In seed plants, various types of meristems are initiated and maintained during the sporophyte generation, while their gametophytes lack meristems and rely on sporophyte tissues for growth. In contrast, seed‐free vascular plants, such as ferns, develop meristems during both the sporophyte and gametophyte generations, allowing for the independent growth of both generations. Recent findings have highlighted both conserved and lineage‐specific roles of the HAIRY MERISTEM (HAM) family of GRAS‐domain transcriptional regulators in various meristems throughout the land plant lifecycle. Here, we review and discuss howHAMgenes maintain meristem indeterminacy in both sporophytes and gametophytes, with a focus on studies performed in two model species: the flowering plantArabidopsis thalianaand the fernCeratopteris richardii. Additionally, we summarize the crucial and tightly regulated functions of the microRNA171 (miR171)‐HAM regulatory modules, which define HAM spatial patterns and activities during meristem development across various meristem identities in land plants. 
    more » « less