Abstract To help foster interest in science, technology, engineering, and math (STEM), it is important to develop opportunities that excite and teach young minds about STEM-related fields. Over the past several years, our university-based research group has sought to help grow excitement around the biomechanics and biomedical engineering fields. The purposes of this technical brief are to (1) discuss the development of a partnership built between a St. Louis area high school and biomechanics research lab and (2) provide practical guidance for other researchers looking to implement a long-term outreach program. The partnership uses three different outreach opportunities. The first opportunity consisted of 12th-grade students visiting university research labs for an up-close perspective of ongoing biomedical research. The second opportunity was a biomedical research showcase where research-active graduate students traveled to the high school to perform demonstrations. The third opportunity consisted of a collaborative capstone project where a high school student was able to carry out research directly in a university lab. To date, we have expanded our reach from 19 students to interacting with over 100 students, which has yielded increased interest in STEM related research. Our postprogram survey showed that outreach programs such as the one described herein can increase interest in STEM within all ages of high school students. Building partnerships between high schools and university researchers increases the interest in STEM amongst high school students, and gives graduate students an outlet to present work to an eager-to-learn audience.
more »
« less
This content will become publicly available on February 17, 2026
Individual Showcase: What do high school students experience and learn during a two-day datathon?
What do high school students learn from a two-day datathon during which they tackle data to visualize the impact of biased data on healthcare decisions? How do they interact with their team of high school students, data scientists, clinicians, and teachers? What did we, the developers and leaders of the datathon, learn? How would we approach it differently next year? Our goal is to answer these questions plus share lessons learned. We will then divide the audience into teams to brainstorm ways to approach and solve some of the problems we experienced and hopefully recruit some audience members to participate in our June 2025 Brown University Health Artificial Intelligence (AI) Systems Thinking for Equity (HASTE) Datathon in Providence, Rhode Island (Brown University Datathon, 2024).
more »
« less
- Award ID(s):
- 2148451
- PAR ID:
- 10610168
- Publisher / Repository:
- Data Science for Everyone
- Date Published:
- Format(s):
- Medium: X
- Location:
- San Antonio, TX
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Choosing your own adventure: Engaging the new learning society through integrative curriculum designIn our increasingly data-driven society, it is critical for high school students to learn to integrate computational thinking with other disciplines in solving real world problems. To address this need for the life sciences in particular, we have developed the Bio-CS Bridge, a modular computational system coupled with curriculum integrating biology and computer science. Our transdisciplinary team comprises university and high school faculty and students with expertise in biology, computer science, and education. Our approach engages students and teachers in scientific practices using biological data that they can collect themselves, and computational tools that they help to design and implement, to address the real-world problem of pollinator decline. Our modular approach to high school curriculum design provides teachers with the educational flexibility to address national and statewide biology and computer science standards for a wide range of learner types. We are using a teacher- leader model to disseminate the Bio-CS Bridge, whose components will be freely available online.more » « less
-
Broadening participation in engineering is critical given the gap between the nation’s need for engineering graduates and its production of them. Efforts to spark interest in engineering among PreK-12 students have increased substantially in recent years as a result. However, past research has demonstrated that interest is not always sufficient to help students pursue engineering majors, particularly for rural students. In many rural communities, influential adults (family, friends, teachers) are often the primary influence on career choice, while factors such as community values, lack of social and cultural capital, limited course availability, and inadequate financial resources act as potential barriers. To account for these contextual factors, this project shifts the focus from individual students to the communities to understand how key stakeholders and organizations support engineering as a major choice and addresses the following questions: RQ1. What do current undergraduate engineering students who graduated from rural high schools describe as influences on their choice to attend college and pursue engineering as a post-secondary major? RQ2. How does the college choice process differ for rural students who enrolled in a 4-year university immediately after graduating from high school and those who transferred from a 2-year institution? RQ3. How do community members describe the resources that serve as key supports as well as the barriers that hinder support in their community? RQ4. What strategies do community members perceive their community should implement to enhance their ability to support engineering as a potential career choice? RQ5. How are these supports transferable or adaptable by other schools? What community-level factors support or inhibit transfer and adaptation? To answer the research questions, we employed a three-phase qualitative study. Phase 1 focused on understanding the experiences and perceptions of current [University Name] students from higher-producing rural schools. Analysis of focus group and interview data with 52 students highlighted the importance of interest and support from influential adults in students’ decision to major in engineering. One key finding from this phase was the importance of community college for many of our participants. Transfer students who attended community college before enrolling at [University Name] discussed the financial influences on their decision and the benefits of higher education much more frequently than their peers. In Phase 2, we used the findings from Phase 1 to conduct interviews within the participants’ home communities. This phase helped triangulate students’ perceptions with the perceptions and practices of others, and, equally importantly, allowed us to understand the goals, attitudes, and experiences of school personnel and local community members as they work with students. Participants from the students’ home communities indicated that there were few opportunities for students to learn more about engineering careers and provided suggestions for how colleges and universities could be more involved with students from their community. Phase 3, scheduled for Spring 2020, will bring the findings from Phases 1 and 2 back to rural communities via two participatory design workshops. These workshops, designed to share our findings and foster collaborative dialogue among the participants, will enable us to explore factors that support or hinder transfer of findings and to identify policies and strategies that would enhance each community’s ability to support engineering as a potential career choice.more » « less
-
About the slide set The slides are divided into sections (“Concepts”) including: What is engineering/synthetic biology? (Concept 1-1); the “Design, Build, Test, & Learn” cycle (Concept 1-2), Core Tools for engineering biology (Concepts 1-3 and 1-4), and finally exploring Impacts & Applications of engineering biology (Concept 1-5). The slides can be used as a complete lecture, or any concept topic can be used to supplement existing material. For example, Concept 1-1 could be used to introduce synthetic biology to professionals outside the field, or the Concept 1-5 Data Science section could be modified to show the intersections of the field in a computer science course. The slides are available to use under Creative Commons license CC BY-NC-SA. The goal of these slides is to provide free, accessible, and modular explanations of key Engineering Biology topics. EBRC provides this curricular module under a Creative Commons Attribution-NonCommercial-ShareAlike 2.0 license, which allows free use in noncommercial settings with credit for the material given to EBRC and the content authors. By downloading these resources, you agree to these terms. If you are interested in using EBRC material in a commercial setting or have other usage questions, please contact us at education@ebrc.org. The slides were created by Michael Sheets (Boston University) and Joshua Atkinson (Univ. of Southern California), with support from the EBRC Education Working Group. Audience These lecture slides are designed for educators looking to incorporate current synthetic & engineering biology practices into their teaching material. These slides were designed with a target audience of undergraduate and graduate students, but could be adapted for high school students (and coupled with BioBuilder material, for a great experience). Recommended student knowledge: “biology 101” level, generally how DNA & cells work Learning Objectives You will be able to answer: - What is synthetic/engineering biology? - How can I Design, Build, Test, and Learn from biological systems? - What are the Core Tools of engineering biology? - How and where can engineering biology be applied to positively impact society? You will have: Planned a design cycle to approach a current problem Learned about engineering biology tools that can help you develop your idea Discovered the many sectors that engineering biology can positively impactmore » « less
-
Engineering Projects in Community Service (EPICS) High utilizes human-centered design processes to teach high school students how to develop solutions to real-world problems within their communities. The goals of EPICS High are to utilize both principles from engineering and social entrepreneurship to engage high and middle school students as problem-solvers and spark interest in STEM careers. Recently, the Cisco corporate advised fund at the Silicon Valley Community Foundation, granted Arizona State University funds to expand EPICS High to underrepresented students and study the student outcomes from participation in this innovative program. In this exploratory study we combined qualitative methods—in person observations and informal interviews—along with pre and post surveys with high school students, to answer the questions: What skills do students gain and how does their mindset about engineering entrepreneurship develop through participation in EPICS High? Research took place in Title I schools (meaning they have a high number of students from low-income families) as well as non-Title I schools. Our preliminary results show that students made gains in the following areas: their attitudes toward engineering; ability to improve upon existing ideas; incorporating stakeholders; overcoming obstacles; social responsibility; and appreciation of multiple perspectives when solving engineering problems. While males have better baseline scores for most measures, females tend to have the most growth in many of these areas. We conclude that these initial measures show positive outcomes for students participating in EPICS High, and provide questions for further research.more » « less
An official website of the United States government
