skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Crustal Structure of Southern California from Velocity and Attenuation Tomography
Recent studies of Southern California have employed velocity and attenuation tomography to elucidate two aspects of crustal structure. Low-frequency velocity tomography reveals large-scale heterogeneity that can be approximated by a discrete set (𝐾 ≤ 10) of tectonic regions, each characterized by an isostatically balanced lithospheric column reflecting the composition and tectonic history of the region. The boundaries between tectonic regions are typically localized structures expressed at the surface by major faults, topographic fronts, and geochemical transitions. The efficacy with which tomographic regionalization (TR) represents the subsurface geography of major tectonic units in Southern California indicates that the TR idealization works surprisingly well in this part of the Pacific‐North America plate boundary. High‐frequency attenuation tomography in Southern California supports the hypothesis that the decay of P and S waves propagating through the upper and middle crust is dominated by elastic scattering from small-scale heterogeneities of high fractal dimension, rather than by anelastic dissipation. The amplitude of the scattering varies systematically among the tectonic regions and correlates with the degree of recent faulting and deformation within a region. These results motivate speculation that small-scale crustal heterogeneities responsible for high-frequency attenuation are generated within the seismogenic zone through a dynamic interplay between distributed deformation and localized fracturing.  more » « less
Award ID(s):
2225216
PAR ID:
10610287
Author(s) / Creator(s):
Publisher / Repository:
Annals of Geophysics
Date Published:
Journal Name:
Annals of Geophysics
Volume:
67
ISSN:
1593-5213
Page Range / eLocation ID:
S429
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The southern Cascadia forearc undergoes a three-stage tectonic evolution, each stage involving different combinations of tectonic drivers, that produce differences in the upper-plate deformation style. These drivers include subduction, the northward migration of the Mendocino triple junction and associated thickening and thinning related to the Mendocino Crustal Conveyor (MCC) effect, and the NNW translation of the Sierra Nevada-Great Valley (SNGV) block. We combine geodetic data, plate reconstructions, seismic tomography and topographic observations to determine how the southern Cascadia upper plate is deforming in response to the combined effects of subduction and NNW-directed (MCC- and SNGV-related) tectonic processes. The location of the terrane boundaries between the relatively weak Franciscan complex and the stronger Klamath Mountain province (KMP) and SNGV block has been a key control on the style of upper-plate deformation in the southern Cascadia forearc since the mid-Miocene. At ∼15 Ma, present-day southern Cascadia was in central Cascadia and deformation there was principally controlled by subduction processes. Since ∼5 Ma, this region of the Cascadia upper plate, where the KMP lies inboard of the Franciscan complex, has been deforming in response to both subduction and MCC- and SNGV-related effects. GPS data show that the KMP is currently moving to the NNW at ∼8–12 mm/yr with little internal deformation, largely in response to the northward push of the SNGV block at its southern boundary. In contrast, the Franciscan complex is accommodating high NNW-directed and NE-directed shortening strain produced by MCC-related shortening and subduction coupling respectively. This composite tectonic regime can explain the style of faulting within and west of the KMP. Associated with this Mendocino Crustal Conveyor crustal thickening, seismic tomography imagery shows a region of low velocity material that we interpret to represent crustal flow and injection of Franciscan crust into the KMP at intracrustal levels. We suggest that this MCC-related crustal flow and injection of material into the KMP is a relatively young feature (post ∼5 Ma) and is driving a rejuvenated period of rock uplift within the KMP. This scenario provides a potential explanation for steep channels and high relief, suggestive of rapid erosion rates within the interior of the KMP. 
    more » « less
  2. null (Ed.)
    Abstract Several tectonic processes combine to produce the crustal deformation observed across the Cascadia margin: (1) Cascadia subduction, (2) the northward propagation of the Mendocino Triple Junction (MTJ), (3) the translation of the Sierra Nevada–Great Valley (SNGV) block along the Eastern California Shear Zone–Walker Lane and, (3) extension in the northwestern Basin and Range, east of the Cascade Arc. The superposition of deformation associated with these processes produces the present-day GPS velocity field. North of ~ 45° N observed crustal displacements are consistent with inter-seismic subduction coupling. South of ~ 45° N, NNW-directed crustal shortening produced by the Mendocino crustal conveyor (MCC) and deformation associated with SNGV-block motion overprint the NE-directed Cascadia subduction coupling signal. Embedded in this overall pattern of crustal deformation is the rigid translation of the Klamath terrane, bounded on its north and west by localized zones of deformation. Since the MCC and SNGV processes migrate northward, their impact on the crustal deformation in southern Cascadia is a relatively recent phenomenon, since ~ 2 –3 Ma. 
    more » « less
  3. Abstract Although the surface deformation of tectonic plate boundaries is well determined by geological and geodetic measurements, the pattern of flow below the lithosphere remains poorly constrained. We use the crustal velocity field of the Plate Boundary Observatory to illuminate the distribution of horizontal flow beneath the California margin. At lower-crustal and upper-mantle depths, the boundary between the Pacific and North American plates is off-centered from the San Andreas fault, concentrated in a region that encompasses the trace of nearby active faults. A major step is associated with return flow below the Eastern California Shear Zone, leading to the extrusion of the Mojave block and a re-distribution of fault activity since the Pleistocene. Major earthquakes in California have occurred above the regions of current plastic strain accumulation. Deformation is mechanically coupled from the crust to the asthenosphere, with mantle flow overlaid by a kinematically consistent network of faults in the brittle crust. 
    more » « less
  4. Abstract The Southern Puna plateau in the central Andes has a complicated tectonic history that includes episodes of distributed shortening and extension, lithospheric delamination, uplift and Quaternary backarc volcanism. In this study, the upper crustal structure and present‐day deformation in this area is investigated using a new regional earthquake catalog derived with a deep‐learning‐based phase picker. Results show abundant strike‐slip seismicity at shallow depths in the eastern Southern Puna plateau that reveals active fault systems in the area and indicates N‐S extension/E‐W compression that changes orientation and relative magnitude from north to south. A broad zone of seismic quiescence in the western plateau may indicate a zone of upper crustal decoupling from large‐scale deformation. The region separating the western and eastern plateau exhibits a complex stress field that can be related to the boundary of east/west oriented middle‐to‐lower crustal flow in the main volcanic arc. Southeast of the plateau in the Sierras Pampeanas, crustal seismicity deepens and is dominated by conjugate reverse faulting structures associated with the direction of plate convergence. Vp and Vs seismic velocity models of the upper crust obtained through local earthquake tomography with the improved seismic catalog show low‐velocity anomalies near intermontane basins, except in the Antofagasta basin where a high‐velocity anomaly possibly represents shallow intrusive component of Quaternary basaltic volcanism. Below the Cerro Galan caldera, an upper crustal 10‐day long earthquake swarm is observed which may indicate local stress perturbations from fluids at the top of the crustal magmatic system that feeds this volcano. 
    more » « less
  5. null (Ed.)
    Buoyancy anomalies within Earth’s mantle create large convective currents that are thought to control the evolution of the lithosphere. While tectonic plate motions provide evidence for this relation, the mechanism by which mantle processes influence near-surface tectonics remains elusive. Here, we present an azimuthal anisotropy model for the Pacific Northwest crust that strongly correlates with high-velocity structures in the underlying mantle but shows no association with the regional mantle flow field. We suggest that the crustal anisotropy is decoupled from horizontal basal tractions and, instead, created by upper mantle vertical loading, which generates pressure gradients that drive channelized flow in the mid-lower crust. We then demonstrate the interplay between mantle heterogeneities and lithosphere dynamics by predicting the viscous crustal flow that is driven by local buoyancy sources within the upper mantle. Our findings reveal how mantle vertical load distribution can actively control crustal deformation on a scale of several hundred kilometers. 
    more » « less