skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 9, 2026

Title: Source Parameter Analysis Using Maximum Amplitudes in the Time Domain
ABSTRACT We measure maximum amplitudes in the time domain on recordings of the 2019 Ridgecrest earthquake sequence to convert ground-motion amplitudes to source spectra. To do this, we modify Richter’s local magnitude relation to measure frequency-dependent empirical amplitude-decay curves and station corrections for a series of narrowband time-domain filters. Peak displacement amplitude in each frequency band is used to construct the displacement spectrum. After correction for attenuation, we determine corner frequency and moment from the resulting source spectra. By this approach, we measure moment magnitudes reliably to as small as ML 1.0. We find stress drop increases with both depth and magnitude and discuss whether this could be an artifact through assumptions about the source, path, and site.  more » « less
Award ID(s):
2225216
PAR ID:
10610292
Author(s) / Creator(s):
; ;
Publisher / Repository:
Bulletin of the Seismological Society of America
Date Published:
Journal Name:
Bulletin of the Seismological Society of America
Volume:
115
Issue:
3
ISSN:
0037-1106
Page Range / eLocation ID:
839 to 849
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We study the electrothermal actuation of nanomechanical motion using a combination of numerical simulations and analytical solutions. The nanoelectrothermal actuator structure is a u-shaped gold nanoresistor that is patterned on the anchor of a doubly clamped nanomechanical beam or a microcantilever resonator. This design has been used in recent experiments successfully. In our finite-element analysis (FEA) based model, our input is an ac current; we first calculate the temperature oscillations due to Joule heating using Ohm’s law and the heat equation; we then determine the thermally induced bending moment and the displacement profile of the beam by coupling the temperature field to Euler–Bernoulli beam theory with tension. Our model efficiently combines transient and frequency-domain analyses: we compute the temperature field using a transient approach and then impose this temperature field as a harmonic perturbation for determining the mechanical response in the frequency domain. This unique modeling method offers lower computational complexity and improved accuracy and is faster than a fully transient FEA approach. Our dynamical model computes the temperature and displacement fields in the time domain over a broad range of actuation frequencies and amplitudes. We validate the numerical results by directly comparing them with experimentally measured displacement amplitudes of nano-electro-mechanical system beams around their eigenmodes in vacuum. Our model predicts a thermal time constant of 1.9 ns in vacuum for our particular structures, indicating that electrothermal actuation is efficient up to ∼80 MHz. We also investigate the thermal response of the actuator when immersed in a variety of fluids. 
    more » « less
  2. SUMMARY The seismic quality factor (Q) of the Earth’s mantle is of great importance for the understanding of the physical and chemical properties that control mantle anelasticity. The radial structure of the Earth’s Q is less well resolved compared to its wave speed structure, and large discrepancies exist among global 1-D Q models. In this study, we build a global data set of amplitude measurements of S, SS, SSS and SSSS waves using earthquakes that occurred between 2009 and 2017 with moment magnitudes ranging from 6.5 to 8.0. Synthetic seismograms for those events are computed in a 1-D reference model PREM, and amplitude ratios between observed and synthetic seismograms are calculated in the frequency domain by spectra division, with measurement windows determined based on visual inspection of seismograms. We simulate wave propagation in a global velocity model S40RTS based on SPECFEM3D and show that the average amplitude ratio as a function of epicentral distance is not sensitive to 3-D focusing and defocusing for the source–receiver configuration of the data set. This data set includes about 5500 S and SS measurements that are not affected by mantle transition zone triplications (multiple ray paths), and those measurements are applied in linear inversions to obtain a preliminary 1-D Q model QMSI. This model reveals a high Q region in the uppermost lower mantle. While model QMSI improves the overall datafit of the entire data set, it does not fully explain SS amplitudes at short epicentral distances or the amplitudes of the SSS and SSSS waves. Using forward modelling, we modify the 1-D model QMSI iteratively to reduce the overall amplitude misfit of the entire data set. The final Q model QMSF requires a stronger and thicker high Q region at depths between 600 and 900 km. This anelastic structure indicates possible viscosity layering in the mid mantle. 
    more » « less
  3. Abstract The spectra of earthquake waveforms can provide important insight into rupture processes, but the analysis and interpretation of these spectra is rarely straightforward. Here we develop a Bayesian framework that embraces the inherent data and modeling uncertainties of spectral analysis to infer key source properties. The method uses a spectral ratio approach to correct the observedS‐wave spectra of nearby earthquakes for path and site attenuation. The objective then is to solve for a joint posterior probability distribution of three source parameters—seismic moment, corner frequency, and high‐frequency falloff rate—for each earthquake in the sequence, as well as a measure of rupture directivity for select target events with good azimuthal station coverage. While computationally intensive, this technique provides a quantitative understanding of parameter tradeoffs and uncertainties and allows one to impose physical constraints through prior distributions on all source parameters, which guide the inversion when data is limited. We demonstrate the method by analyzing in detail the source properties of 14 different target events of magnitude M5 in southern California that span a wide range of tectonic regimes and fault systems. These prominent earthquakes, while comparable in size, exhibit marked diversity in their source properties and directivity, with clear spatial patterns, depth‐dependent trends, and a preference for unilateral directivity. These coherent spatial variations source properties suggest that regional differences in tectonic setting, hypocentral depth or fault zone characteristics may drive variability in rupture processes, with important implications for our understanding of earthquake physics and its relation to hazard. 
    more » « less
  4. Consider the inverse random source scattering problem for the two-dimensional time-harmonic elastic wave equation with a linear load. The source is modeled as a microlocally isotropic generalized Gaussian random function whose covariance operator is a classical pseudodifferential operator. The goal is to recover the principal symbol of the covariance operator from the displacement measured in a domain away from the source. For such a distributional source, we show that the direct problem has a unique solution by introducing an equivalent Lippmann--Schwinger integral equation. For the inverse problem, we demonstrate that, with probability one, the principal symbol of the covariance operator can be uniquely determined by the amplitude of the displacement averaged over the frequency band, generated by a single realization of the random source. The analysis employs the Born approximation, asymptotic expansions of the Green tensor, and microlocal analysis of the Fourier integral operators. 
    more » « less
  5. SUMMARY The sensitivity of Rayleigh wave amplitude to Earth structure has applications to seismic tomography, both in cases where amplitude information is used to supplement phase velocity data to improve images of elastic parameters, and to correct amplitudes for local Earth structure in attenuation tomography. We review the theoretical basis of the ray theoretical approximation, in which the wave amplitudes are controlled by a combination of geometrical spreading and local changes in energy density due to Earth structure. We focus mainly on the latter effect, which we term the constant energy flux approximation. We investigate the ray theoretical basis for this approximation, test it against a full waveform simulation that verifies its accuracy and show how it can be used to compute the sensitivity of amplitude to elastic moduli and density. We investigate how perturbing these parameters in a set of simple Earth models affects Rayleigh wave amplitudes, and demonstrate that a slow velocity heterogeneity can cause either increased or reduced amplitudes, depending upon the depth of the heterogeneity and the observation frequency. Consequently, amplitude sensitivity can be either positive or negative, and its magnitude can vary significantly with frequency. Although an added complication, the very different behaviour of phase velocity and amplitudes to changes in Earth structure implies that the two types of data are complementary and suggest the effectiveness of using both in Rayleigh wave tomography. 
    more » « less