Foreshocks are the most obvious signature of the earthquake nucleation stage and could, in principle, forewarn of an impending earthquake. However, foreshocks are only sometimes observed, and we have a limited understanding of the physics that controls their occurrence. In this work, we use high-resolution earthquake catalogs and estimates of source properties to understand the spatiotemporal evolution of a sequence of 11 foreshocks that occurred ~ 6.5 hours before the 2020 Mw 4.8 Mentone earthquake in west Texas. Elevated pore-pressure and poroelastic stressing from subsurface fluid injection from oil-gas operations is often invoked to explain seismicity in west Texas and the surrounding region. However, here we show that static stresses induced from the initial ML 4.0 foreshock significantly perturbed the local shear stress along the fault and could have triggered the Mentone mainshock. The majority (9/11) of the earthquakes leading up to the Mentone mainshock nucleated in areas where the static shear stresses were increased from the initial ML 4.0 foreshock. The spatiotemporal properties of the 11 earthquakes that preceded the mainshock cannot easily be explained in the context of a preslip or cascade nucleation model. We show that at least 6/11 events are better classified as aftershocks of the initial ML 4.0. Together, our results suggest that a combination of physical mechanisms contributed to the occurrence of the 11 earthquakes that preceded the mainshock, including static-stressing from earthquake-earthquake interactions, aseismic creep, and stress perturbations induced from fluid injection. Our work highlights the role of earthquake-earthquake triggering in induced earthquake sequences, and suggests that such triggering could help sustain seismic activity following initial stressing perturbations from fluid injection.
more »
« less
The 2022 Goesan earthquake of the moment magnitude 3.8 along the buried fault in the central Korean Peninsula
Abstract On October 28, 2022, a moment magnitude (Mw) 3.8 earthquake occurred in Goesan, South Korea, typically characterized as a stable continental region. Herein, we analyze 42 earthquakes, including the Mw 3.8 earthquake, the largest foreshock (Mw 3.3), which preceded the mainshock by 17 s, and the largest aftershock (Mw 2.9). The primary aim of this study is to identify interactions among the seismic events. To this end, we utilized the permanent seismic networks with the closest station at 8.3 km from the epicenter, and the temporary network deployed eight hours after the mainshock’s occurrence. Relocation results delineate that the mainshock occurred at the southeastern tip of the hypocenter distribution of three foreshocks, trending west-northwest–east-southeast. The aftershocks form an overall spatially diffused seismic pattern that propagates toward both ends of the inferred lineament in the downdip direction. The rupture directivity of the mainshock, along with waveform similarity across the mainshock and foreshocks, confirms the inferred geometry, corresponding well with the focal mechanisms of the mainshock and the largest foreshock. We demonstrate that the change in Coulomb failure stress (ΔCFS) by the largest foreshock was positive where the mainshock occurred and that the mainshock generated ΔCFS capable of triggering the propagation of the aftershocks.
more »
« less
- Award ID(s):
- 2225216
- PAR ID:
- 10610322
- Publisher / Repository:
- Journal of Seismology
- Date Published:
- Journal Name:
- Journal of Seismology
- Volume:
- 28
- Issue:
- 2
- ISSN:
- 1383-4649
- Page Range / eLocation ID:
- 519 to 534
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Foreshocks are the only currently widely identified precursory seismic behavior, yet their utility and even identifiability are problematic, in part because of extreme variation in behavior. Here, we establish some global trends that help identify the expected frequency of foreshocks as well the type of earthquake most prone to foreshocks. We establish these tendencies using the global earthquake catalog of the U.S. Geological Survey National Earthquake Information Center with a completeness level of magnitude 5 and mainshocks with Mw≥7.0. Foreshocks are identified using three clustering algorithms to address the challenge of distinguishing foreshocks from background activity. The methods give a range of 15%–43% of large mainshocks having at least one foreshock but a narrower range of 13%–26% having at least one foreshock with magnitude within two units of the mainshock magnitude. These observed global foreshock rates are similar to regional values for a completeness level of magnitude 3 using the same detection conditions. The foreshock sequences have distinctive characteristics with the global composite population b-values being lower for foreshocks than for aftershocks, an attribute that is also manifested in synthetic catalogs computed by epidemic-type aftershock sequences, which intrinsically involves only cascading processes. Focal mechanism similarity of foreshocks relative to mainshocks is more pronounced than for aftershocks. Despite these distinguishing characteristics of foreshock sequences, the conditions that promote high foreshock productivity are similar to those that promote high aftershock productivity. For instance, a modestly higher percentage of interplate mainshocks have foreshocks than intraplate mainshocks, and reverse faulting events slightly more commonly have foreshocks than normal or strike-slip-faulting mainshocks. The western circum-Pacific is prone to having slightly more foreshock activity than the eastern circum-Pacific.more » « less
-
Abstract The 2021MW6.0 Yangbi, Yunnan strike‐slip earthquake occurred on an unmapped crustal fault near the Weixi‐Qiaoho‐Weishan Fault along the southeast margin of the Tibetan Plateau. Using near‐source broadband seismic data from ChinArray, we investigate the spatial and temporal rupture evolution of the mainshock using apparent moment‐rate functions (AMRFs) determined by the empirical Green's function (EGF) method. Assuming a 1D line source on the fault plane, the rupture propagated unilaterally southeastward (∼144°) over a rupture length of ∼8.0 km with an estimated rupture speed of 2.1 km/s to 2.4 km/s. A 2D coseismic slip distribution for an assumed maximum rupture propagation speed of 2.2 km/s indicates that the rupture propagated to the southeast ∼8.0 km along strike and ∼5.0 km downdip with a peak slip of ∼2.1 m before stopping near the largest foreshock, where three bifurcating subfaults intersect. Using the AMRFs, the radiated energy of the mainshock is estimated as ∼. The relatively low moment scaled radiated energyof 1.5 × 10−5and intense foreshock and aftershock activity might indicate reactivation of an immature fault. The earthquake sequence is mainly distributed along a northwest‐southeast trend, and aftershocks and foreshocks are distributed near the periphery of the mainshock large‐slip area, suggesting that the stress in the mainshock slip zone is significantly reduced to below the level for more than a few overlapping aftershock to occur.more » « less
-
null (Ed.)ABSTRACT The 2019 Ridgecrest earthquake sequence culminated in the largest seismic event in California since the 1999 Mw 7.1 Hector Mine earthquake. Here, we combine geodetic and seismic data to study the rupture process of both the 4 July Mw 6.4 foreshock and the 6 July Mw 7.1 mainshock. The results show that the Mw 6.4 foreshock rupture started on a northwest-striking right-lateral fault, and then continued on a southwest-striking fault with mainly left-lateral slip. Although most moment release during the Mw 6.4 foreshock was along the southwest-striking fault, slip on the northwest-striking fault seems to have played a more important role in triggering the Mw 7.1 mainshock that happened ∼34 hr later. Rupture of the Mw 7.1 mainshock was characterized by dominantly right-lateral slip on a series of overall northwest-striking fault strands, including the one that had already been activated during the nucleation of the Mw 6.4 foreshock. The maximum slip of the 2019 Ridgecrest earthquake was ∼5 m, located at a depth range of 3–8 km near the Mw 7.1 epicenter, corresponding to a shallow slip deficit of ∼20%–30%. Both the foreshock and mainshock had a relatively low-rupture velocity of ∼2 km/s, which is possibly related to the geometric complexity and immaturity of the eastern California shear zone faults. The 2019 Ridgecrest earthquake produced significant stress perturbations on nearby fault networks, especially along the Garlock fault segment immediately southwest of the 2019 Ridgecrest rupture, in which the coulomb stress increase was up to ∼0.5 MPa. Despite the good coverage of both geodetic and seismic observations, published coseismic slip models of the 2019 Ridgecrest earthquake sequence show large variations, which highlight the uncertainty of routinely performed earthquake rupture inversions and their interpretation for underlying rupture processes.more » « less
-
Abstract Foreshocks provide valuable information on the nucleation process of an upcoming large earthquake. We applied high‐resolution similar‐waveform techniques for earthquake detection, location, and source parameter estimation to understand the space‐time evolution of a foreshock sequence and its relationship to the mainshock hypocenter. The 1999Mw7.1 Hector Mine, California, earthquake was preceded by 50 foreshocks (−0.4 ≤ M ≤ 3.7) during the 20 hr before the mainshock. Foreshock activity did not accelerate leading up to the mainshock. Their locations moved north with time, rupturing adjacent areas along the fault plane with little overlap, but remained within a compact <2 km3volume. The mainshock initiated at a location where previous foreshocks had locally increased the shear stress. These observations are consistent with a triggered cascade of stress transfer, where previous foreshocks load adjacent fault patches to rupture as additional foreshocks, and eventually the mainshock.more » « less
An official website of the United States government

