skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Spatially selected and dependent random effects for small area estimation with application to rent burden
Abstract Area-level models for small area estimation typically rely on areal random effects to shrink design-based direct estimates towards a model-based predictor. Incorporating the spatial dependence of the random effects into these models can further improve the estimates when there are not enough covariates to fully account for the spatial dependence of the areal means. A number of recent works have investigated models that include random effects for only a subset of areas, in order to improve the precision of estimates. However, such models do not readily handle spatial dependence. In this paper, we introduce a model that accounts for spatial dependence in both the random effects as well as the latent process that selects the effects. We show how this model can significantly improve predictive accuracy via an empirical simulation study based on data from the American Community Survey, and illustrate its properties via an application to estimate county-level median rent burden.  more » « less
Award ID(s):
2215169
PAR ID:
10610392
Author(s) / Creator(s):
; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Journal of the Royal Statistical Society Series A: Statistics in Society
ISSN:
0964-1998
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We develop a Bayesian model–based approach to finite population estimation accounting for spatial dependence. Our innovation here is a framework that achieves inference for finite population quantities in spatial process settings. A key distinction from the small area estimation setting is that we analyze finite populations referenced by their geographic coordinates. Specifically, we consider a two‐stage sampling design in which the primary units are geographic regions, the secondary units are point‐referenced locations, and the measured values are assumed to be a partial realization of a spatial process. Estimation of finite population quantities from geostatistical models does not account for sampling designs, which can impair inferential performance, whereas design‐based estimates ignore the spatial dependence in the finite population. We demonstrate by using simulation experiments that process‐based finite population sampling models improve model fit and inference over models that fail to account for spatial correlation. Furthermore, the process‐based models offer richer inference with spatially interpolated maps over the entire region. We reinforce these improvements and demonstrate scalable inference for groundwater nitrate levels in the population of California Central Valley wells by offering estimates of mean nitrate levels and their spatially interpolated maps. 
    more » « less
  2. Abstract Spatial models for occupancy data are used to estimate and map the true presence of a species, which may depend on biotic and abiotic factors as well as spatial autocorrelation. Traditionally researchers have accounted for spatial autocorrelation in occupancy data by using a correlated normally distributed site‐level random effect, which might be incapable of modeling nontraditional spatial dependence such as discontinuities and abrupt transitions. Machine learning approaches have the potential to model nontraditional spatial dependence, but these approaches do not account for observer errors such as false absences. By combining the flexibility of Bayesian hierarchal modeling and machine learning approaches, we present a general framework to model occupancy data that accounts for both traditional and nontraditional spatial dependence as well as false absences. We demonstrate our framework using six synthetic occupancy data sets and two real data sets. Our results demonstrate how to model both traditional and nontraditional spatial dependence in occupancy data, which enables a broader class of spatial occupancy models that can be used to improve predictive accuracy and model adequacy. 
    more » « less
  3. Abstract Small area estimation (SAE) has become an important tool in official statistics, used to construct estimates of population quantities for domains with small sample sizes. Typical area-level models function as a type of heteroscedastic regression, where the variance for each domain is assumed to be known and plugged in following a design-based estimate. Recent work has considered hierarchical models for the variance, where the design-based estimates are used as an additional data point to model the latent true variance in each domain. These hierarchical models may incorporate covariate information but can be difficult to sample from in high-dimensional settings. Utilizing recent distribution theory, we explore a class of Bayesian hierarchical models for SAE that smooth both the design-based estimate of the mean and the variance. In addition, we develop a class of unit-level models for heteroscedastic Gaussian response data. Importantly, we incorporate both covariate information as well as spatial dependence, while retaining a conjugate model structure that allows for efficient sampling. We illustrate our methodology through an empirical simulation study as well as an application using data from the American Community Survey. 
    more » « less
  4. Abstract Gaussian process (GP) is a staple in the toolkit of a spatial statistician. Well‐documented computing roadblocks in the analysis of large geospatial datasets using GPs have now largely been mitigated via several recent statistical innovations. Nearest neighbor Gaussian process (NNGP) has emerged as one of the leading candidates for such massive‐scale geospatial analysis owing to their empirical success. This article reviews the connection of NNGP to sparse Cholesky factors of the spatial precision (inverse‐covariance) matrix. Focus of the review is on these sparse Cholesky matrices which are versatile and have recently found many diverse applications beyond the primary usage of NNGP for fast parameter estimation and prediction in the spatial (generalized) linear models. In particular, we discuss applications of sparse NNGP Cholesky matrices to address multifaceted computational issues in spatial bootstrapping, simulation of large‐scale realizations of Gaussian random fields, and extensions to nonparametric mean function estimation of a GP using random forests. We also review a sparse‐Cholesky‐based model for areal (geographically aggregated) data that addresses long‐established interpretability issues of existing areal models. Finally, we highlight some yet‐to‐be‐addressed issues of such sparse Cholesky approximations that warrant further research. This article is categorized under:Algorithms and Computational Methods > AlgorithmsAlgorithms and Computational Methods > Numerical Methods 
    more » « less
  5. Abstract Model-based small area estimation is frequently used in conjunction with survey data to establish estimates for under-sampled or unsampled geographies. These models can be specified at either the area-level, or the unit-level, but unit-level models often offer potential advantages such as more precise estimates and easy spatial aggregation. Nevertheless, relative to area-level models, literature on unit-level models is less prevalent. In modeling small areas at the unit level, challenges often arise as a consequence of the informative sampling mechanism used to collect the survey data. This article provides a comprehensive methodological review for unit-level models under informative sampling, with an emphasis on Bayesian approaches. 
    more » « less