skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 24, 2026

Title: Diffusion-limited settling of highly porous particles in density-stratified fluids
The vertical transport of solid material in a stratified medium is fundamental to a number of environmental applications, with implications for the carbon cycle and nutrient transport in marine ecosystems. In this work, we study the diffusion-limited settling of highly porous particles in a density-stratified fluid through a combination of experiment, analysis, and numerical simulation. By delineating and appealing to the diffusion-limited regime wherein buoyancy effects due to mass adaptation dominate hydrodynamic drag, we derive a simple expression for the steady settling velocity of a sphere as a function of the density, size, and diffusivity of the solid, as well as the density gradient of the background fluid. In this regime, smaller particles settle faster, in contrast with most conventional hydrodynamic drag mechanisms. Furthermore, we outline a general mathematical framework for computing the steady settling speed of a body of arbitrary shape in this regime and compute exact results for the case of general ellipsoids. Using hydrogels as a highly porous model system, we validate the predictions with laboratory experiments in linear stratification for a wide range of parameters. Last, we show how the predictions can be applied to arbitrary slowly varying background density profiles and demonstrate how a measured particle position over time can be used to reconstruct the background density profile.  more » « less
Award ID(s):
1909521 2308063
PAR ID:
10610450
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
122
Issue:
25
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this work, we theoretically investigate the motion of an arbitrarily shaped particle in a linear density stratified fluid with weak stratification and negligible inertia. We calculate the hydrodynamic force and torque experienced by the particle using the method of matched asymptotic expansions. We analyse our results for two classes of particles (non-skew and skew) depending on whether the particle possesses a centre of hydrodynamic stress. For both classes, we derive general expressions for the modified resistance tensors in the presence of stratification. We demonstrate the application of our results by considering some specific examples of particles settling in a direction parallel to the density gradient by considering both the limits of high ( $$Pe\gg 1$$ ) and low ( $$Pe\ll 1$$ ) Péclet numbers. We find that presence of stratification causes a slender body to rotate and settle along the broader side due to the contribution of the hydrostatic torque. Our work sheds light on the impact of stratification on the transport of arbitrarily shaped particles in density stratified environments in low-Reynolds-number regimes. 
    more » « less
  2. Particulate matter in the environment, such as sediment, marine debris and plankton, is transported by surface waves. The transport of these inertial particles is different from that of fluid parcels described by Stokes drift. In this study, we consider the transport of negatively buoyant particles that settle in flow induced by surface waves as described by linear wave theory in arbitrary depth. We consider particles that fall under both a linear drag regime in the low Reynolds number limit and in a nonlinear drag regime in the transitional Reynolds number range. Based on an analysis of typical applications, we find that the nonlinear regime is the most widely applicable. From an expansion in the particle Stokes number, we find kinematic expressions for inertial particle motion in waves, and from a multiscale expansion in the dimensionless wave amplitude, we find expressions for the wave-averaged drift velocities. These drift velocities are analogous to Stokes drift and can be used in large-scale models that do not resolve surface waves. We find that the horizontal drift velocity is reduced relative to the Stokes drift of fluid parcels and that the vertical drift velocity is enhanced relative to the particle terminal settling velocity. We also demonstrate that a cloud of settling particles released simultaneously will disperse in the horizontal direction. Finally, we discuss the accuracy of our expressions by comparing against numerical simulations, which show excellent agreement, and against experimental data, which show the same trends. 
    more » « less
  3. The role of solid obstacle surface roughness in turbulent convection in porous media is not well understood, even though it is frequently used for heat transfer enhancement in many applications. The focus of this paper is to systematically study the influence of solid obstacle surface roughness in porous media on the microscale flow physics and report its effect on macroscale drag and Nusselt number. The Reynolds-averaged flow field is numerically simulated using the realizable k-ε model for a flow through a periodic porous medium consisting of an in-line arrangement of square cylinders with square roughness particles on the cylinder surface. Two flow regimes are identified with respect to the surface roughness particle height—fine and coarse roughness regimes. The effect of the roughness particles in the fine roughness regime is limited to the near-wall boundary layer around the solid obstacle surface. In the coarse roughness regime, the roughness particles modify the microscale flow field in the entire pore space of the porous medium. In the fine roughness regime, the heat transfer from the rough solid obstacles to the fluid inside the porous medium is less than that from a smooth solid obstacle. In the coarse roughness regime, there is an enhancement in the heat transfer from the rough solid obstacle to the fluid inside the porous medium. Total drag reduction is also observed in the fine roughness regime for the smallest roughness particle height. The surface roughness particle spacing determines the fractional area of the solid obstacle surface covered by recirculating, reattached, and stagnating flow. As the roughness particle spacing increases, there are two competing factors for the heat transfer rate—increase due to more surface area covered by reattached flow and decrease due to fewer roughness particles on the solid obstacle surface. Decreasing the porosity and increasing the Reynolds number amplify the effect of the surface roughness on the microscale flow. The results suggest that heat transfer in porous media can be enhanced, if the increase in drag can be overcome. The results also show that the fine roughness regime, which is frequently encountered due to corrosion, is detrimental to the heat transfer performance of porous media. 
    more » « less
  4. We derive analytical solutions for hydrodynamic sources and sinks to granular temperature in moderately dense suspensions of elastic particles at finite Reynolds numbers. Modelling the neighbour-induced drag disturbances with a Langevin equation allows an exact solution for the joint fluctuating acceleration–velocity distribution function $$P(v^{\prime },a^{\prime };t)$$ . Quadrant-conditioned covariance integrals of $$P(v^{\prime },a^{\prime };t)$$ yield the hydrodynamic source and sink that dictate the evolution of granular temperature that can be used in Eulerian two-fluid models. Analytical predictions agree with benchmark data from particle-resolved direct numerical simulations and show promise as a general theory from gas–solid to bubbly flows. 
    more » « less
  5. We consider the unbounded settling dynamics of a circular disk of diameter $$d$$ and finite thickness $$h$$ evolving with a vertical speed $$U$$ in a linearly stratified fluid of kinematic viscosity $$\unicode[STIX]{x1D708}$$ and diffusivity $$\unicode[STIX]{x1D705}$$ of the stratifying agent, at moderate Reynolds numbers ( $$Re=Ud/\unicode[STIX]{x1D708}$$ ). The influence of the disk geometry (diameter $$d$$ and aspect ratio $$\unicode[STIX]{x1D712}=d/h$$ ) and of the stratified environment (buoyancy frequency $$N$$ , viscosity and diffusivity) are experimentally and numerically investigated. Three regimes for the settling dynamics have been identified for a disk reaching its gravitational equilibrium level. The disk first falls broadside-on, experiencing an enhanced drag force that can be linked to the stratification. A second regime corresponds to a change of stability for the disk orientation, from broadside-on to edgewise settling. This occurs when the non-dimensional velocity $$U/\sqrt{\unicode[STIX]{x1D708}N}$$ becomes smaller than some threshold value. Uncertainties in identifying the threshold value is discussed in terms of disk quality. It differs from the same problem in a homogeneous fluid which is associated with a fixed orientation (at its initial value) in the Stokes regime and a broadside-on settling orientation at low, but finite Reynolds numbers. Finally, the third regime corresponds to the disk returning to its broadside orientation after stopping at its neutrally buoyant level. 
    more » « less