skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Lipschitz Stability of Travel Time Data
Abstract We prove that the reconstruction of a certain type of length spaces from their travel time data on a closed subset is Lipschitz stable. The travel time data is the set of distance functions from the entire space, measured on the chosen closed subset. The case of a Riemannian manifold with boundary with the boundary as the measurement set appears is a classical geometric inverse problem arising from Gel’fand’s inverse boundary spectral problem. Examples of spaces satisfying our assumptions include some non-simple Riemannian manifolds, Euclidean domains with non-trivial topology, and metric trees.  more » « less
Award ID(s):
2204997
PAR ID:
10610494
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
The Journal of Geometric Analysis
Volume:
35
Issue:
8
ISSN:
1050-6926
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Consider the geometric inverse problem: there is a set of delta-sources in spacetime that emit waves travelling at unit speed. If we know all the arrival times at the boundary cylinder of the spacetime, can we reconstruct the space, a Riemannian manifold with boundary? With a finite set of sources we can only hope to get an approximate reconstruction, and we indeed provide a discrete metric approximation to the manifold with explicit data-driven error bounds when the manifold is simple. This is the geometrization of a seismological inverse problem where we measure the arrival times on the surface of waves from an unknown number of unknown interior microseismic events at unknown times. The closeness of two metric spaces with a marked boundary is measured by a labeled Gromov–Hausdorff distance. If measurements are done for infinite time and spatially dense sources, our construction produces the true Riemannian manifold and the finite-time approximations converge to it in the metric sense 
    more » « less
  2. We study an inverse problem of determining a time-dependent potential appearing in the wave equation on conformally transversally anisotropic manifolds of dimension three or higher. These are compact Riemannian manifolds with boundary that are conformally embedded in a product of the real line and a transversal manifold. Under the assumption of the attenuated geodesic ray transform being injective on the transversal manifold, we prove the unique determination of time-dependent potentials from the knowledge of a certain partial Cauchy data set. 
    more » « less
  3. We study an inverse problem of determining a time-dependent damping coefficient and potential appearing in the wave equation in a compact Riemannian manifold of dimension three or higher. More specifically, we are concerned with the case of conformally transversally anisotropic manifolds, or in other words, compact Riemannian manifolds with boundary conformally embedded in a product of the Euclidean line and a transversal manifold. With an additional assumption of the attenuated geodesic ray transform being injective on the transversal manifold, we prove that the knowledge of a certain partial Cauchy data set determines the time-dependent damping coefficient and potential uniquely. 
    more » « less
  4. Abstract In this paper, we consider the travel time tomography problem for conformal metrics on a bounded domain, which seeks to determine the conformal factor of the metric from the lengths of geodesics joining boundary points. We establish forward and inverse stability estimates for simple conformal metrics under somea prioriconditions. We then apply the stability estimates to show the consistency of a Bayesian statistical inversion technique for travel time tomography with discrete, noisy measurements. 
    more » « less
  5. Jiaping Wang (Ed.)
    We provide new proofs based on the Myers–Steenrod theorem to confirm that travel time data, travel time difference data and the broken scattering relations determine a simple Riemannian metric on a disc up to the natural gauge of a boundary fixing diffeomorphism. Our method of the proof leads to a Lipschitz-type stability estimate for the first two data sets in the class of simple metrics. 
    more » « less