skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fe and Ni Dopants Facilitating Ammonia Synthesis on Mn 4 N and Mechanistic Insights from First-Principles Methods
Cyclic step-catalysis enables intermittent, atmospheric ammonia production, and can be integrated with sustainable and renewable energy sources. By employing metal (e.g., Mn) nitride, a nitrogen carrier, the rate-limiting N2 activation step is bypassed. In this work, molecular-level pathways, describing the reduction of Mn4N by dissociatively adsorbed hydrogen, were investigated using periodic density functional theory (DFT). The established mechanism confirmed that Fe and Ni doped in the nitride sublayer and top layer can disturb local electronic structures and be exploited to tune the ammonia production activity. The strength of N−M (M = Mn, Fe, Ni) and H−M bonds both determine the overall reduction thermochemistry. DFT-based modeling further showed that the low concentration of Fe or Ni in the Mn4N sublayer facilitates N diffusion by lowering the diffusion energy barrier. Also, these heteroatom dopant species, particularly Ni, decrease the reduction endergonicity, thanks to the strong hydrogen binding with the surface Ni dopant. The Brønsted−Evans−Polanyi relationship and linear scaling relationships have been developed to reveal ammonia evolution kinetic and energetic trends for a series of idealized Fe- and Ni-doped Mn4N. Deviations from the linear scaling relationship have been observed for certain doped systems, indicating potentially more complex behaviors of metal nitrides and intriguing promises for greater ammonia synthesis materials design opportunities.  more » « less
Award ID(s):
1856084
PAR ID:
10610499
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
ACS Publications
Date Published:
Journal Name:
The Journal of Physical Chemistry C
Volume:
122
Issue:
11
ISSN:
1932-7447
Page Range / eLocation ID:
6109 to 6116
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    This paper reports a highly active and stable nonprecious metal electrocatalyst based on bimetallic nanoscale nickel molybdenum nitride developed for the hydrogen evolution reaction (HER). A composite of 7 nm Ni 2 Mo 3 N nanoparticles grown on nickel foam (Ni 2 Mo 3 N/NF) was prepared through a simple and economical synthetic method involving one-step annealing of Ni foam, MoCl 5 , and urea without a Ni precursor. The Ni 2 Mo 3 N/NF exhibits high activity with low overpotential ( η 10 of 21.3 mV and η 100 of 123.8 mV) and excellent stability for the HER, achieving one of the best performances among state-of-the-art transition metal nitride based catalysts in alkaline media. Supporting density functional theory (DFT) calculations indicate that N sites in Ni 2 Mo 3 N with a N–Mo coordination number of four have a hydrogen adsorption energy close to that of Pt and hence may be responsible for the enhanced HER performance. 
    more » « less
  2. Abstract Ammonia (NH3) electrosynthesis gains significant attention as NH3is essentially important for fertilizer production and fuel utilization. However, electrochemical nitrogen reduction reaction (NRR) remains a great challenge because of low activity and poor selectivity. Herein, a new class of atomically dispersed Ni site electrocatalyst is reported, which exhibits the optimal NH3yield of 115 µg cm−2h−1at –0.8 V versus reversible hydrogen electrode (RHE) under neutral conditions. High faradic efficiency of 21 ± 1.9% is achieved at ‐0.2 V versus RHE under alkaline conditions, although the ammonia yield is lower. The Ni sites are stabilized with nitrogen, which is verified by advanced X‐ray absorption spectroscopy and electron microscopy. Density functional theory calculations provide insightful understanding on the possible structure of active sites, relevant reaction pathways, and confirm that the Ni‐N3sites are responsible for the experimentally observed activity and selectivity. Extensive controls strongly suggest that the atomically dispersed NiN3site‐rich catalyst provides more intrinsically active sites than those in N‐doped carbon, instead of possible environmental contamination. This work further indicates that single‐metal site catalysts with optimal nitrogen coordination is very promising for NRR and indeed improves the scaling relationship of transition metals. 
    more » « less
  3. The earth-abundant transition metal manganese (Mn) has been shown to activate dinitrogen (N 2) and store nitrogen (N) as nitride for subsequent chemical reaction, for example, to produce ammonia (NH3). Chemical looping ammonia synthesis (CLAS) is a practical way to use Mn nitride by contacting nitride with gaseous hydrogen (H2 ) to produce ammonia (NH 3). Here, the dynamic process of N atoms penetrating into solid Mn has been investigated. Nitride layer growth was modeled to quantitate and pre- dict the storage of activated N in Mn towards designing CLAS systems. The N diffusion coefficient (DN ) and reaction rate constant K for the first-order nitridation reaction were estimated at 6.2 ± 5.5 10-11 m2/s and 4.1 ± 3.5 10-4 1/s, respectively, at atmospheric pressure and 700 °C. Assuming spherical particles of Mn with a diameter of < 10 lm, about 56.8 metric tons of Mn is sufficient to produce a metric ton of NH 3 per day using CLAS 
    more » « less
  4. Electro- and photocatalytic reduction of N 2 to NH 3 —the nitrogen reduction reaction (NRR)—is an environmentally- and energy-friendly alternative to the Haber-Bosch process for ammonia production. There is a great demand for the development of novel semiconductor-based electrocatalysts with high efficiency and stability for the direct conversion of inert substrates—including N 2 to ammonia—using visible light irradiation under ambient conditions. Herein we report electro-, and photocatalytic NRR with transition metal dichalcogenides (TMDCs), viz MoS 2 and WS 2 . Improved acid treatment of bulk TMDCs yields exfoliated TMDCs (exTMDCs) only a few layers thick with ∼10% S vacancies. Linear scan voltammograms on exMoS 2 and exWS 2 electrodes reveal significant NRR activity for exTMDC-modified electrodes, which is greatly enhanced by visible light illumination. Spectral measurements confirm ammonia as the main reaction product of electrocatalytic and photocatalytic NRR, and the absence of hydrazine byproduct. Femtosecond-resolved transient absorption studies provide direct evidence of interaction between photo-generated excitons/trions with N 2 adsorbed at S vacancies. DFT calculations corroborate N 2 binding to exMoS 2 at S-vacancies, with substantial π -backbonding to activate dinitrogen. Our findings suggest that chemically functionalized exTMDC materials could fulfill the need for highly-desired, inexpensive catalysts for the sustainable production of NH 3 using Sunlight under neutral pH conditions without appreciable competing production of H 2 . 
    more » « less
  5. null (Ed.)
    Ammonia has emerged as a promising energy carrier owing to its carbon neutral content and low expense in long-range transportation. Therefore, development of a specific pathway to release the energy stored in ammonia is therefore in urgent demand. Electrochemical oxidation provides a convenient and reliable route to attain efficient utilization of ammonia. Here, we report that the high entropy (Mn, Fe, Co, Ni, Cu)3O4 oxides can achieve high electrocatalytic activity for ammonia oxidation reaction (AOR) in non-aqueous solutions. The AOR onset overpotential of (Mn, Fe, Co, Ni, Cu)3O4 is 0.70 V, which is nearly 0.2 V lower than that of their most active single metal cation counterpart. The mass spectroscopy study reveals that (Mn, Fe, Co, Ni, Cu)3O4 preferentially oxidizes ammonia to environmentally friendly diatomic nitrogen with a Faradic efficiency of over 85%. The X-ray photoelectron spectroscopy (XPS) result indicates that the balancing metal d-band of Mn and Cu cations helps retain a long-lasting electrocatalytic activity. Overall, this work introduces a new family of earth-abundant transition metal high entropy oxide electrocatalysts for AOR, thus heralding a new paradigm of catalyst design for enabling ammonia as an energy carrier. 
    more » « less