skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Do *they* mean ‘us’? Interpreting Referring Expression variation under Intergroup Bias
The variations between in-group and out-group speech (intergroup bias) are subtle and could underlie many social phenomena like stereotype perpetuation and implicit bias. In this paper, we model intergroup bias as a tagging task on English sports comments from forums dedicated to fandom for NFL teams. We curate a dataset of over 6 million game-time comments from opposing perspectives (the teams in the game), each comment grounded in a non-linguistic description of the events that precipitated these comments (live win probabilities for each team). Expert and crowd annotations justify modeling the bias through tagging of implicit and explicit referring expressions and reveal the rich, contextual understanding of language and the world required for this task. For large-scale analysis of intergroup variation, we use LLMs for automated tagging, and discover that LLMs occasionally perform better when prompted with linguistic descriptions of the win probability at the time of the comment, rather than numerical probability. Further, large-scale tagging of comments using LLMs uncovers linear variations in the form of referent across win probabilities that distinguish in-group and out-group utterances.  more » « less
Award ID(s):
2145479 2107524
PAR ID:
10610556
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Findings of the Association for Computational Linguistics: EMNLP 2024, Association for Computational Linguistics
Date Published:
Page Range / eLocation ID:
9772-9785
Format(s):
Medium: X
Location:
Miami, Florida, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Online antisocial behavior, such as cyberbullying, harassment, and trolling, is a widespread problem that threatens free discussion and has negative physical and mental health consequences for victims and communities. While prior work has proposed automated methods to identify hostile comments in online discussions, these methods work retrospectively on comments that have already been posted, making it difficult to intervene before an interaction escalates. In this paper we instead consider the problem of forecasting future hostilities in online discussions, which we decompose into two tasks: (1) given an initial sequence of non-hostile comments in a discussion, predict whether some future comment will contain hostility; and (2) given the first hostile comment in a discussion, predict whether this will lead to an escalation of hostility in subsequent comments. Thus, we aim to forecast both the presence and intensity of hostile comments based on linguistic and social features from earlier comments. To evaluate our approach, we introduce a corpus of over 30K annotated Instagram comments from over 1,100 posts. Our approach is able to predict the appearance of a hostile comment on an Instagram post ten or more hours in the future with an AUC of .82 (task 1), and can furthermore distinguish between high and low levels of future hostility with an AUC of .91 (task 2). 
    more » « less
  2. Large Language Models (LLMs) have demonstrated unprecedented capability in code generation. However, LLM-generated code is still plagued with a wide range of functional errors, especially for complex programming tasks that LLMs have not seen before. Recent studies have shown that developers often struggle with inspecting and fixing incorrect code generated by LLMs, diminishing their productivity and trust in LLM-based code generation. Inspired by the mutual grounding theory in communication, we propose an interactive approach that leverages code comments as a medium for developers and LLMs to establish a shared understanding. Our approach facilitates iterative grounding by interleaving code generation, inline comment generation, and contextualized user feedback through editable comments to align generated code with developer intent. We evaluated our approach on two popular benchmarks and demonstrated that our approach significantly improved multiple state-of-the-art LLMs, e.g., 17.1% pass@1 improvement for code-davinci-002 on HumanEval. Furthermore, we conducted a user study with 12 participants in comparison to two baselines: (1) interacting with GitHub Copilot, and (2) interacting with a multi-step code generation paradigm called Multi-Turn Program Synthesis. Participants completed the given programming tasks 16.7% faster and with 10.5% improvement in task success rate when using our approach. Both results show that interactively refining code comments enables the collaborative establishment of mutual grounding, leading to more accurate code generation and higher developer confidence. 
    more » « less
  3. The paper explores the performance of LLMs in the context of multi-dimensional analytic writing assessments, i.e. their ability to provide both scores and comments based on multiple assessment criteria. Using a corpus of literature reviews written by L2 graduate students and assessed by human experts against 9 analytic criteria, we prompt several popular LLMs to perform the same task under various conditions. To evaluate the quality of feedback comments, we apply a novel feedback comment quality evaluation framework. This framework is interpretable, cost-efficient, scalable, and reproducible, compared to existing methods that rely on manual judgments. We find that LLMs can generate reasonably good and generally reliable multi-dimensional analytic assessments. We release our corpus and code\footnote{\url{https://github.com/jaaack-wang/multi-dimensional-analytic-writing-assessments}.} for reproducibility. 
    more » « less
  4. Aligning large language models (LLMs) to human preferences is a crucial step in building helpful and safe AI tools, which usually involve training on supervised datasets. Popular algorithms such as Direct Preference Optimization (DPO) rely on pairs of AI-generated responses ranked according to human annotation. The response pair annotation process might bring human bias. Building a correct preference dataset is the costly part of the alignment pipeline. To improve annotation efficiency and quality in the LLMs alignment, we propose REAL:Response Embedding-based Alignment for LLMs, a strategy for constructing a high-quality training dataset that focuses on acquiring the less ambiguous preference pairs for labeling out of a set of response candidates. Our selection process is based on the similarity of embedding responses independently of prompts, which guarantees the selection process in an off-policy setting, avoiding adaptively measuring the similarity during the training. Experimental results on real-world dataset SHP2 and synthetic HH-RLHF benchmarks indicate that choosing dissimilar response pairs enhances the direct alignment of LLMs while reducing inherited labeling errors. The model aligned with dissimilar response pairs obtained a better margin and win rate on the dialogue task. Our findings suggest that focusing on distinct pairs can reduce the label error and improve LLM alignment efficiency, saving up to 65% of annotators’ work. The code of the work can be found https://github.com/ honggen-zhang/REAL-Alignment. 
    more » « less
  5. Previous research has documented the existence of both online echo chambers and hostile intergroup interactions. In this paper, we explore the relationship between these two phenomena by studying the activity of 5.97M Reddit users and 421M comments posted over 13 years. We examine whether users who are more engaged in echo chambers are more hostile when they comment on other communities. We then create a typology of relationships between political communities based on whether their users are toxic to each other, whether echo chamber-like engagement with these communities has a polarizing effect, and on the communities' political leanings. We observe both the echo chamber and hostile intergroup interaction phenomena, but neither holds universally across communities. Contrary to popular belief, we find that polarizing and toxic speech is more dominant between communities on the same, rather than opposing, sides of the political spectrum, especially on the left; however, this mostly points to the collective targeting of political outgroups. 
    more » « less