We prove a splitting formula that reconstructs the logarithmic Gromov–Witten invariants of simple normal crossing varieties from the punctured Gromov–Witten invariants of their irreducible components, under the assumption of the gluing strata being toric varieties. The formula is based on the punctured Gromov–Witten theory developed by Abramovich, Chen, Gross, and Siebert.
more »
« less
Solomon-Tukachinsky’s Versus Welschinger’s Open Gromov-Witten Invariants of Symplectic Six-Folds
Abstract Our previous paper describes a geometric translation of the construction of open Gromov–Witten invariants by Solomon and Tukachinsky from a perspective of $$A_{\infty }$$-algebras of differential forms. We now use this geometric perspective to show that these invariants reduce to Welschinger’s open Gromov–Witten invariants in dimension 6, inline with their and Tian’s expectations. As an immediate corollary, we obtain a translation of Solomon–Tukachinsky’s open WDVV equations into relations for Welschinger’s invariants.
more »
« less
- Award ID(s):
- 1901979
- PAR ID:
- 10323596
- Date Published:
- Journal Name:
- International Mathematics Research Notices
- Volume:
- 2022
- Issue:
- 9
- ISSN:
- 1073-7928
- Page Range / eLocation ID:
- 7021 to 7055
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We prove a correspondence between Donaldson–Thomas invariants of quivers with potential having trivial attractor invariants and genus zero punctured Gromov–Witten invariants of holomorphic symplectic cluster varieties. The proof relies on the comparison of the stability scattering diagram, describing the wall-crossing behavior of Donaldson–Thomas invariants, with a scattering diagram capturing punctured Gromov–Witten invariants via tropical geometry.more » « less
-
In a previous paper (Farajzadeh-Tehrani in Geom Topol 26:989–1075, 2022), for any logarithmic symplectic pair (X, D) of a symplectic manifold X and a simple normal crossings symplectic divisor D, we introduced the notion of log pseudo-holomorphic curve and proved a compactness theorem for the moduli spaces of stable log curves. In this paper, we introduce a natural Fredholm setup for studying the deformation theory of log (and relative) curves. As a result, we obtain a logarithmic analog of the space of Ruan–Tian perturbations for these moduli spaces. For a generic compatible pair of an almost complex structure and a log perturbation term, we prove that the subspace of simple maps in each stratum is cut transversely. Such perturbations enable a geometric construction of Gromov–Witten type invariants for certain semi-positive pairs (X, D) in arbitrary genera. In future works, we will use local perturbations and a gluing theorem to construct log Gromov–Witten invariants of arbitrary such pair (X, D).more » « less
-
null (Ed.)We compute the $g=1$ , $n=1$ B-model Gromov–Witten invariant of an elliptic curve $$E$$ directly from the derived category $$\mathsf{D}_{\mathsf{coh}}^{b}(E)$$ . More precisely, we carry out the computation of the categorical Gromov–Witten invariant defined by Costello using as target a cyclic $$\mathscr{A}_{\infty }$$ model of $$\mathsf{D}_{\mathsf{coh}}^{b}(E)$$ described by Polishchuk. This is the first non-trivial computation of a positive-genus categorical Gromov–Witten invariant, and the result agrees with the prediction of mirror symmetry: it matches the classical (non-categorical) Gromov–Witten invariants of a symplectic 2-torus computed by Dijkgraaf.more » « less
-
Using the Fredholm setup of Farajzadeh-Tehrani [Peking Math. J. (2023), https://doi.org/10.1007/s42543-023-00069-1], we study genus zero (and higher) relative Gromov-Witten invariants with maximum tangency of symplectic log Calabi-Yau fourfolds. In particular, we give a short proof of Gross [Duke Math. J. 153 (2010), pp. 297–362, Cnj. 6.2] that expresses these invariants in terms of certain integral invariants by considering generic almost complex structures to obtain a geometric count. We also revisit the localization calculation of the multiple-cover contributions in Gross [Prp. 6.1] and recalculate a few terms differently to provide more details and illustrate the computation of deformation/obstruction spaces for maps that have components in a destabilizing (or rubber) component of the target. Finally, we study a higher genus version of these invariants and explain a decomposition of genus one invariants into different contributions.more » « less
An official website of the United States government

