skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 1, 2026

Title: Anelastic Convective Entities. Part I: Formulation and Implication for Nighttime Convection
A formulation based on the anelastic approximation yields time-dependent simulations of convective updrafts, downdrafts, and other aspects of convection, such as stratiform layers, under reasonably flexible geometry assumptions. Termed anelastic convective entities (ACEs), such realizations can aid understanding of convective processes and potentially provide time-dependent building blocks for parameterization at a complexity between steady-plume models and cloud-resolving simulations. Formulation and behavior of single-ACE cases are addressed here, with multi-ACE cases in Part II. Even for cases deliberately formulated to provide a comparison to a traditional convective plume, ACE behavior differs substantially because dynamic entrainment, detrainment, and nonhydrostatic perturbation pressure are consistently included. Entrainment varies with the evolution of the entity, but behavior akin to deep-inflow effects noted in observations emerges naturally. The magnitude of the mass flux with nonlocal pressure effects consistently included is smaller than for a corresponding traditional steady-plume model. ACE solutions do not necessarily approach a steady state even with a fixed environment but can exhibit chains of rising thermals and even episodic deep convection. The inclusion of nonlocal dynamics allows a developing updraft to tunnel through layers with substantial convective inhibition (CIN). For cases of nighttime continental convection using GoAmazon soundings, this is found to greatly reduce the effect of surface-inversion CIN. The observed convective cold top is seen as an inherent property of the solution, both in a transient, rising phase and as a persistent feature in mature deep convection.  more » « less
Award ID(s):
2414576 1936810
PAR ID:
10610670
Author(s) / Creator(s):
;
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of the Atmospheric Sciences
Volume:
82
Issue:
3
ISSN:
0022-4928
Page Range / eLocation ID:
599 to 623
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Seeking a family of models filling the hierarchy between steady plumes and cloud-resolving simulations, Part I of this study presented a formulation termed anelastic convective entities (ACEs). The solution includes pressure-mediated nonlocal effects in both vertical and horizontal and thus yields time-dependent simulations of convective updrafts, downdrafts, and other aspects of convection even for a single column interacting with a fixed environment through dynamically determined inflow and outflow. Here, we show how a straightforward iteration of that formulation can capture interactions among entities in a variety of choices for the geometry of the interactions. Using an oceanic sounding to contrast with land cases in Part I, we first illustrate that a single ACE can exhibit ongoing time-dependent evolution depending, e.g., on choices in the parameterized turbulence. For a case in which a single ACE with a fixed environment would yield a near-steady deep-convective state, we examine the adjustment process in a multi-ACE prototype for adjustment within a climate model grid cell. This embedded ACE configuration exhibits time-dependent stratiform cloud expansion through convective outflow modified by dynamic feedbacks. The gridscale adjustment process not only includes traditional warming by large-scale descent but also captures the spread of the convective cold top. The formulation also illustrates the possibility of multihour time lag before the transition to deep convection and remote initiation by small vertical velocities in the gridcell environment. Comparing 1-, 2-, 4-, and 8-ACE instances suggests promise as a potential convective-parameterization class between traditional and superparameterization, while providing a sandbox to aid understanding of convective and adjustment processes. 
    more » « less
  2. Abstract We demonstrate that an extended eddy‐diffusivity mass‐flux (EDMF) scheme can be used as a unified parameterization of subgrid‐scale turbulence and convection across a range of dynamical regimes, from dry convective boundary layers, through shallow convection, to deep convection. Central to achieving this unified representation of subgrid‐scale motions are entrainment and detrainment closures. We model entrainment and detrainment rates as a combination of turbulent and dynamical processes. Turbulent entrainment/detrainment is represented as downgradient diffusion between plumes and their environment. Dynamical entrainment/detrainment is proportional to a ratio of a relative buoyancy of a plume and a vertical velocity scale, that is modulated by heuristic nondimensional functions which represent their relative magnitudes and the enhanced detrainment due to evaporation from clouds in drier environment. We first evaluate the closures offline against entrainment and detrainment rates diagnosed from large‐eddy simulations (LES) in which tracers are used to identify plumes, their turbulent environment, and mass and tracer exchanges between them. The LES are of canonical test cases of a dry convective boundary layer, shallow convection, and deep convection, thus spanning a broad range of regimes. We then compare the LES with the full EDMF scheme, including the new closures, in a single column model (SCM). The results show good agreement between the SCM and LES in quantities that are key for climate models, including thermodynamic profiles, cloud liquid water profiles, and profiles of higher moments of turbulent statistics. The SCM also captures well the diurnal cycle of convection and the onset of precipitation. 
    more » « less
  3. Abstract Most climate models still suffer large warm and dry summer biases in the central United States (CUS). As a solution, we improved cumulus parameterization to represent 1) the lifting effect of small-scale rising motions associated with Great Plains low-level jets and midtropospheric perturbations by defining the cloud base at the level of condensation, 2) the constraint of the cumulus entrainment rate depending on the boundary layer depth, and 3) the temperature-dependent cloud-to-rainwater conversion rate. These improvements acted to (i) trigger mesoscale convective systems in unfavorable environmental conditions to enhance total rainfall amount, (ii) lower cloud base and increase cloud depth to increase low-level clouds and reduce surface shortwave radiation, (iii) suppress penetrative cumuli from shallow boundary layers to remedy the overestimation of precipitation frequency, and (iv) increase water detrainment to form sufficient cirrus clouds and balanced outgoing longwave radiation. Much of these effects were nonlocal and nonlinear, where more frequent but weaker convective rainfall led to stronger (and sometimes more frequent) large-scale precipitation remotely. Together, they produced consistently heavier precipitation and colder temperature with a realistic atmospheric energy balance, essentially eliminating the CUS warm and dry biases through robust physical mechanisms. 
    more » « less
  4. Abstract Convective inhibition (CIN) is one of the parameters used by forecasters to determine the inflow layer of a convective storm, but little work has examined the best way to compute CIN. One decision that must be made is whether to lift parcels following a pseudoadiabat (removing hydrometeors as the parcel ascends) or reversible moist adiabat (retaining hydrometeors). To determine which option is best, idealized simulations of ordinary convection are examined using a variety of base states with different reversible CIN values for parcels originating in the lowest 500 m. Parcel trajectories suggest that ascent over the lowest few kilometers, where CIN is typically accumulated, is best conceptualized as a reversible moist adiabatic process instead of a pseudoadiabatic process. Most inflow layers do not contain parcels with substantial reversible CIN, despite these parcels possessing ample convective available potential energy and minimal pseudoadiabatic CIN. If a stronger initiation method is used, or hydrometeor loading is ignored, simulations can ingest more parcels with large amounts of reversible CIN. These results suggest that reversible CIN, not pseudoadiabatic CIN, is the physically relevant way to compute CIN and that forecasters may benefit from examining reversible CIN instead of pseudoadiabatic CIN when determining the inflow layer. 
    more » « less
  5. Atmospheric convective available potential energy (CAPE) is expected to increase under greenhouse gas–induced global warming, but a recent regional study also suggests enhanced convective inhibition (CIN) over land although its cause is not well understood. In this study, a global climate model is first evaluated by comparing its CAPE and CIN with reanalysis data, and then their future changes and the underlying causes are examined. The climate model reasonably captures the present-day CAPE and CIN patterns seen in the reanalysis, and projects increased CAPE almost everywhere and stronger CIN over most land under global warming. Over land, the cases or times with medium to strong CAPE or CIN would increase while cases with weak CAPE or CIN would decrease, leading to an overall strengthening in their mean values. These projected changes are confirmed by convection-permitting 4-km model simulations over the United States. The CAPE increase results mainly from increased low-level specific humidity, which leads to more latent heating and buoyancy for a lifted parcel above the level of free convection (LFC) and also a higher level of neutral buoyancy. The enhanced CIN over most land results mainly from reduced low-level relative humidity (RH), which leads to a higher lifting condensation level and a higher LFC and thus more negative buoyancy. Over tropical oceans, the near-surface RH increases slightly, leading to slight weakening of CIN. Over the subtropical eastern Pacific and Atlantic Ocean, the impact of reduced low-level atmospheric lapse rates overshadows the effect of increased specific humidity, leading to decreased CAPE. 
    more » « less