skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Estimating Grain Sizes of Martian Dune Sand: A Freeware‐Based Methodology With Initial Results
Abstract Grain sizes of Martian sand dunes are critical sedimentological data on sand provenance and transport pathways. Thermal inertia values are used to characterize the grain sizes of dune sand. Most early characterizations involved single dune fields. Recent work based on global data sets has provided more wide‐spread dune sand locations, though these data sets include the non‐sandy interdune areas. To provide a more accurate grain size characterization, we leverage a global thermal inertia data set, a global dune database and a global imaging mosaic to develop a freeware‐based methodology for deriving grain sizes. This methodology involves delineation of sand‐only areas within dune fields and collection of thermal inertia values from those areas. We consider a unimodal histogram of values with a mode <∼350 thermal inertia units (J m−2 K−1 s−1/2) to imply an effective exclusion of non‐sand surfaces. Application of this methodology to dune fields for which thermal inertia values have been previous derived shows our results fall within the envelope of those values. We apply our methodology to tropical dune fields on Mars for which Dust Cover Index data imply dust‐free surfaces. Conversion of these thermal inertia values to sand grain sizes yields a range of sand classifications of fine sand to granules. Comparison of sand size classifications with geographic location shows grain size ranges that are distinctive by location, consistent with local sourcing. This work points toward geographically diverse sand formation mechanisms yielding diverse grain sizes, while providing a freeware‐based and thus widely accessible method for expanding the derivation of these critical data.  more » « less
Award ID(s):
1950901
PAR ID:
10610724
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
AGU
Date Published:
Journal Name:
Earth and Space Science
Volume:
11
Issue:
9
ISSN:
2333-5084
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Wind‐blown sand dunes are both a consequence and a driver of climate dynamics; they arise under persistently dry and windy conditions, and are sometimes a source for airborne dust. Dune fields experience extreme daily changes in temperature, yet the role of atmospheric stability in driving sand transport and dust emission has not been established. Here, we report on an unprecedented multiscale field experiment at the White Sands Dune Field (New Mexico, USA), where by measuring wind, humidity and temperature profiles in the atmosphere concurrently with sediment transport, we demonstrate that a daily rhythm of sand and dust transport arises from nonequilibrium atmospheric boundary layer convection. A global analysis of 45 dune fields confirms the connection found in situ between surface wind speed and diurnal temperature cycles, revealing an unrecognized climate feedback that may contribute to the growth of deserts on Earth and dune activity on Mars. 
    more » « less
  2. Abstract Recent research on dust emissions from eolian dunes seeks to improve regional and global emissions estimates and knowledge of dust sources, particularly with a changing climate. Dust emissions from dune fields can be more accurately estimated when considering the whole eolian system composed of active to stabilized dunes, interdunes, sand sheets, and playas. Each landform can emit different concentrations of dust depending on the supply of silt and clay, soil surface characteristics, and the degree to which the landforms are dynamic and interact. We used the Portable In Situ Wind Erosion Laboratory (PI-SWERL) to measure PM10 (particulate matter <10 μm) dust emission potential from landforms in two end-member eolian systems: the White Sands dune field in New Mexico (USA), composed of gypsum, and the Monahans dune field in west Texas, composed of quartz. White Sands is a hotspot of dust emissions where dunes and the adjacent playa yield high dust fluxes up to 8.3 mg/m2/s. In contrast, the active Monahans dunes contain 100% sand and produce low dust fluxes up to 0.5 mg/m2/s, whereas adjacent stabilized sand sheets and dunes that contain silt and clay could produce up to 17.7 mg/m2/s if reactivated by climate change or anthropogenic disturbance. These findings have implications for present and future dust emission potential of eolian systems from the Great Plains to the southwestern United States, with unrealized emissions of >300 t/km2/yr. 
    more » « less
  3. Abstract To address uncertainties in the values and mathematical form of the radiative thermal conductivitykradin the mantle, we developed new models for the transport, scattering, and absorption of thermal radiation in semitransparent multiphase polycrystalline assemblages. We show that the Rosseland diffusion equation correctly describes the diffusion of thermal radiation and infer the form of the effective spectral coefficients through numerical experimentation. We show that the scattering coefficient depends on the grain size and on interphase contact statistics in complicated ways, but that simplifications can be employed in practice. The effective opacity of a composite random material is a harmonically weighted mixture in the limit of infinitely large grain size and an arithmetically weighted mixture in the limit of infinitesimal grain size. Using existing absorption spectra for major upper mantle minerals, we estimatekradas a function of temperature, grain size, and petrology. In mantle assemblages, the scattering effect is important for small grain sizes (<1 mm), but the grain size effect on the effective opacity of a multiphase medium is important for grain sizes up to 10 cm. We calculate that upper mantlekradis about 2–3.5 W·m−1·K−1for a representative mean grain size range of 0.01 to 1 cm. This translates to a total thermal conductivity of 5.5–7 W·m−1·K−1. Application of our model to the cooling of oceanic lithosphere shows thatkradincreases net cooling by about 25%. 
    more » « less
  4. Context.One of the most important open questions in planet formation is how dust grains in a protoplanetary disk manage to overcome growth barriers and form the ∼100 km planet building blocks that we call planetesimals. There appears to be a gap between the largest grains that can be produce by coagulation, and the smallest grains that are needed for the streaming instability (SI) to form planetesimals. Aims.Here we explore the novel hypothesis that dust coagulation and the SI work in tandem; in other words, they form a feedback loop where each one boosts the action of the other to bridge the gap between dust grains and planetesimals. Methods.We developed a semi-analytical model of dust concentration due to the SI, and an analytic model of how the SI affects the fragmentation and radial drift barriers. We then combined them to model our proposed feedback loop. Results.In the fragmentation-limited regime, we find a powerful synergy between the SI and dust growth that drastically increases both grain sizes and densities. We find that a midplane dust-to-gas ratio ofϵ ≥ 0.3 is a sufficient condition for the feedback loop to reach the planetesimal-forming region for turbulence values 10−4 ≤ α ≤ 10−3and grain sizes 0.01 ≤ St ≤ 0.1. In contrast, the drift-limited regime only shows grain growth without significant dust accumulation. In other words, planetesimal formation remains challenging in the drift-dominated regime and dust traps may be required to allow planet formation at wide orbital distances. 
    more » « less
  5. Abstract Coastal ecosystems such as mangroves, salt marshes, and seagrasses sequester large amounts of carbon per unit area due to their high productivity and sediment accumulation rates. However, only a handful of studies have examined carbon sequestration in coastal dunes, which are shaped by biophysical feedback between aeolian sediment transport and burial-tolerant vegetation. The goal of this study was to measure carbon storage and identify the factors that influence its variability along the foredunes of the US Outer Banks barrier islands of North Carolina. Specifically, differences in carbon stocks (above- and belowground biomass and sand), dune grass abundance, and sand supply were measured among islands, cross-shore dune profile locations, and dune grass species. Carbon varied among aboveground grass biomass (0.1 ± 0.1 kg C m−2), belowground grass biomass (1.1 ± 1.6 kg C m−3), and sand (0.9 ± 0.6 kg C m−3), with the largest amount in belowground grass stocks. Aboveground grass carbon stocks were comparable to those in eelgrass beds and salt marshes on a per-area basis, while sediment carbon values in our study system were lower than those in other coastal systems, including other dune locations. Additionally, sand carbon density was positively related to patterns in dune sand supply and grass abundance, reflecting a self-reinforcing vegetation-sediment feedback at both high and low sand accumulation rates. 
    more » « less