Rutile germanium oxide (r-GeO2), an ultrawide bandgap semiconductor, is a promising material for next-generation power electronics. Understanding and controlling the structure and morphology of r-GeO2 thin films are crucial for advancing their integration into future devices. In this work, r-GeO2 thin films were grown using RF magnetron sputtering on r plane sapphire substrates. Postdeposition annealing (PDA) was performed in an oxygen ambient atmosphere to crystallize the films. PDA at 950 °C resulted in the formation of needle-like nanostructures, predominantly originating at the edges of the film and growing inward toward the sample center. Sequential annealing at increasing temperatures indicated that these needle-like structures begin forming at temperatures above 925 °C. Next, the effect of the PDA duration on the structure was studied. It was seen that PDA at 950 °C for durations of 1 to 15 min promoted formation of the rutile phase, and extending the PDA duration allowed greater surface coverage of the nanostructures. However, annealing even longer, i.e., for 120 min, resulted in mixed phases of α-quartz and rutile GeO2. These findings demonstrate that controlling the PDA temperature and duration can effectively modulate the morphology of rutile-phase GeO2 thin films. 
                        more » 
                        « less   
                    
                            
                            Effect of post-deposition annealing on crystal structure of RF magnetron sputtered germanium dioxide thin films
                        
                    
    
            In this work, we demonstrate the growth and phase stabilization of ultrawide bandgap polycrystalline rutile germanium dioxide (GeO2) thin films. GeO2 thin films were deposited using RF magnetron sputtering on r-plane sapphire (Al2O3) substrates. As-deposited films were x-ray amorphous. Postdeposition annealing was performed at temperatures between 650 and 950 °C in an oxygen or nitrogen ambient. Annealing at temperatures from 750 to 950 °C resulted in mixed-phase polycrystalline films containing tetragonal (rutile) GeO2, hexagonal (α-quartz) GeO2, and/or cubic (diamond) germanium (Ge). When nitrogen was used as the anneal ambient, mixed GeO2 phases were observed. In contrast, annealing in oxygen promoted stabilization of the r-GeO2 phase. Grazing angle x-ray diffraction showed a preferred orientation of (220) r-GeO2 for all crystallized films. The combination of O2 annealing and O2 flux during growth resulted in r-GeO2 films with highly preferential alignment. Using electron microscopy, we observed an interfacial layer of hexagonal-oriented GeO2 with epitaxial alignment to the (11¯02) Al2O3 substrate, which may help stabilize the top polycrystalline r-GeO2 film. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10610765
- Publisher / Repository:
- American Institute of Physics - American Vacuum Society
- Date Published:
- Journal Name:
- Journal of Vacuum Science & Technology A
- Volume:
- 42
- Issue:
- 6
- ISSN:
- 0734-2101
- Page Range / eLocation ID:
- 063403
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            We present structural, magnetic, and optical properties of multiferroic hexagonal YbFeO3 thin films, deposited on single crystal (001) Al2O3 and (111) ysz substrates by a magnetron sputtering system. Interestingly, the thermal stress affects YbFeO3 films on Al2O3 and ysz very differently. Although hexagonal-YbFeO3/Al2O3 films changed from a hexagonal to an orthorhombic phase due to annealing above 1000 °C, hexagonal-YbFeO3/ysz films remained mostly unaffected even after annealing at 1200 °C. The electronic excitations of the YbFeO3 thin films are dominated by Fe3+ d to d on-site electronic excitations as well as O 2p to Fe 3d, Yb 6s, and 5d charge-transfer excitations, and these excitations for hexagonal-YbFeO3 and orthorhombic-YbFeO3 thin films are distinctly different, consistent with the crystal field environments in the hexagonal and orthorhombic phases of YbFeO3. The room temperature energy band gaps of the hexagonal-YbFeO3 and orthorhombic-YbFeO3 thin films were measured to be ∼1.95 ± 0.05 eV and ∼2.40 ± 0.05 eV, respectively.more » « less
- 
            GeSn films were simultaneously deposited on Si (100), Si (111), c-plane sapphire (Al2O3), and fused silica substrates to investigate the impact of the substrate on the resulting GeSn film. The electronic, structural, and optical properties of these films were characterized by temperature-dependent Hall-effect measurements, x-ray diffractometry, secondary ion mass spectrometry, and variable angle spectroscopic ellipsometry. All films were polycrystalline with varying degrees of texturing. The film on Si (100) contained only GeSn (100) grains, 40.4 nm in diameter. The film deposited on Si (111) contained primarily GeSn (111) grains, 36.4 nm in diameter. Both films deposited on silicon substrates were fully relaxed. The layer deposited on Al2O3 contained primarily GeSn (111) grains, 41.3 nm in diameter. The film deposited on fused silica was not textured, and the average grain size was 35.0 nm. All films contained ∼5.6 at. % Sn throughout the layer, except for the film deposited on Al2O3, which contained 7.5% Sn. The films deposited on Si (111), Al2O3, and fused silica exhibit p-type conduction over the entire temperature range, 10–325 K, while the layer deposited on the Si (100) substrate shows a mixed conduction transition from p-type at low temperature to n-type above 220 K. From ∼175 to 260 K, both holes and electrons contribute to conduction. Texturing of the GeSn film on Si (100) was the only characteristic that set this film apart from the other three films, suggesting that something related to GeSn (100) crystal orientation causes this transition from p- to n-type conduction.more » « less
- 
            MnO(001) thin films were grown on commercial MgO(001) substrates at 520 °C by reactive molecular beam epitaxy (MBE) using Mn vapor and O2-seeded supersonic molecular beams (SMBs) both with and without radio frequency (RF) plasma excitation. For comparison, MnO(001) films were grown by reactive MBE using O2 from a leak valve. X-ray photoelectron spectroscopy confirmed the Mn2+ oxidation state and 10%–15% excess oxygen near the growth surface. Reflection high-energy electron diffraction and x-ray diffraction evidenced that the films were rock salt cubic MnO with very strong (001) orientation. High-angle annular dark field scanning transmission electron microscopy with energy-dispersive x-ray spectroscopy demonstrated abrupt MnO/MgO interfaces and indicated [(001)MnO||(001)MgO] epitaxial growth. Ex situ atomic force microscopy of films deposited without RF excitation revealed smooth growth surfaces. An SMB-grown MnO(001) film was converted to Mn3O4 with strong (110) orientation by post-growth exposure to an RF-discharge (RFD) SMB source providing O atoms; the surface of the resultant film contained elongated pits aligned with the MgO110 directions. In contrast, using the RFD-SMB source for growth resulted in MnO(001) films with elongated growth pits and square pyramidal hillocks aligned along the MgO110 and 100 directions, respectively.more » « less
- 
            In the rapidly evolving field of quantum computing, niobium nitride (NbN) superconductors have emerged as integral components due to their unique structural properties, including a high superconducting transition temperature (Tc), exceptional electrical conductivity, and compatibility with advanced device architectures. This study investigates the impact of high-temperature annealing and high-dose gamma irradiation on the structural, electrical, and superconducting properties of NbN films grown on GaN via reactive DC magnetron sputtering. The as-deposited cubic δ-NbN (111) films exhibited a high intensity distinct x-ray diffraction (XRD) peak, a high Tc of 12.82 K, and an atomically flat surface. Annealing at 500 and 950 °C for varying durations revealed notable structural and surface changes. High-resolution scanning transmission electron microscopy (STEM) indicated improved local ordering, while atomic force microscopy showed reduced surface roughness after annealing. X-ray photoelectron spectroscopy revealed a gradual increase in the Nb/N ratio with higher annealing temperatures and durations. High-resolution XRD and STEM analyses showed lattice constant modifications in δ-NbN films, attributed to residual stress changes following annealing. Additionally, XRD φ-scans revealed a sixfold symmetry in the NbN films due to rotational domains relative to GaN. While Tc remained stable after annealing at 500 °C, increasing the annealing temperature to 950 °C degraded Tc to 8.7 K and reduced the residual resistivity ratio from 0.85 in the as-deposited films to 0.29 after 30 min annealing. The effects of high-dose gamma radiation [5 Mrad (Si)] were also studied, demonstrating minimal changes to crystallinity and superconducting performance, indicating excellent radiation resilience. These findings highlight the potential of NbN superconductors for integration into advanced quantum devices and its suitability for applications in radiation-intensive environments such as space, satellites, and nuclear power plants.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    