Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Real systems showing regime shifts, such as ecosystems, are often composed of many dynamical elements interacting on a network. Various early warning signals have been proposed for anticipating regime shifts from observed data. However, it is unclear how one should combine early warning signals from different nodes for better performance. Based on theory of stochastic differential equations, we propose a method to optimize the node set from which to construct an early warning signal. The proposed method takes into account that uncertainty as well as the magnitude of the signal affects its predictive performance, that a large magnitude or small uncertainty of the signal in one situation does not imply the signal’s high performance, and that combining early warning signals from different nodes is often but not always beneficial. The method performs well particularly when different nodes are subjected to different amounts of dynamical noise and stress.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Abstract Electroencephalogram (EEG) microstate analysis entails finding dynamics of quasi-stable and generally recurrent discrete states in multichannel EEG time series data and relating properties of the estimated state-transition dynamics to observables such as cognition and behavior. While microstate analysis has been widely employed to analyze EEG data, its use remains less prevalent in functional magnetic resonance imaging (fMRI) data, largely due to the slower timescale of such data. In the present study, we extend various data clustering methods used in EEG microstate analysis to resting-state fMRI data from healthy humans to extract their state-transition dynamics. We show that the quality of clustering is on par with that for various microstate analyses of EEG data. We then develop a method for examining test–retest reliability of the discrete-state transition dynamics between fMRI sessions and show that the within-participant test–retest reliability is higher than between-participant test–retest reliability for different indices of state-transition dynamics, different networks, and different data sets. This result suggests that state-transition dynamics analysis of fMRI data could discriminate between different individuals and is a promising tool for performing fingerprinting analysis of individuals.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Abstract Energy landscape analysis is a data‐driven method to analyse multidimensional time series, including functional magnetic resonance imaging (fMRI) data. It has been shown to be a useful characterization of fMRI data in health and disease. It fits an Ising model to the data and captures the dynamics of the data as movement of a noisy ball constrained on the energy landscape derived from the estimated Ising model. In the present study, we examine test–retest reliability of the energy landscape analysis. To this end, we construct a permutation test that assesses whether or not indices characterizing the energy landscape are more consistent across different sets of scanning sessions from the same participant (i.e. within‐participant reliability) than across different sets of sessions from different participants (i.e. between‐participant reliability). We show that the energy landscape analysis has significantly higher within‐participant than between‐participant test–retest reliability with respect to four commonly used indices. We also show that a variational Bayesian method, which enables us to estimate energy landscapes tailored to each participant, displays comparable test–retest reliability to that using the conventional likelihood maximization method. The proposed methodology paves the way to perform individual‐level energy landscape analysis for given data sets with a statistically controlled reliability.more » « less
-
Free, publicly-accessible full text available June 1, 2026
-
Cherifi, Hocine (Ed.)We review a class of energy landscape analysis method that uses the Ising model and takes multivariate time series data as input. The method allows one to capture dynamics of the data as trajectories of a ball from one basin to a different basin to yet another, constrained on the energy landscape specified by the estimated Ising model. While this energy landscape analysis has mostly been applied to functional magnetic resonance imaging (fMRI) data from the brain for historical reasons, there are emerging applications outside fMRI data and neuroscience. To inform such applications in various research fields, this review paper provides a detailed tutorial on each step of the analysis, terminologies, concepts underlying the method, and validation, as well as recent developments of extended and related methods.more » « lessFree, publicly-accessible full text available May 9, 2026
-
We study synthetic temporal networks whose evolution is determined by stochastically evolving node variables—synthetic analogues of, e.g., temporal proximity networks of mobile agents. We quantify the long-timescale correlations of these evolving networks by an autocorrelative measure of network-structural memory. Several distinct patterns of autocorrelation arise, including power-law decay and exponential decay, depending on the choice of node-variable dynamics and connection probability function. Our methods are also applicable in wider contexts; our temporal network models are tractable mathematically and in simulation, and our long-term memory quantification is analytically tractable and straightforwardly computable from temporal network data. Published by the American Physical Society2025more » « lessFree, publicly-accessible full text available January 1, 2026
An official website of the United States government
