Complex systems can exhibit sudden transitions or regime shifts from one stable state to another, typically referred to as critical transitions. It becomes a great challenge to identify a robust warning sufficiently early that action can be taken to avert a regime shift. We employ landscape-flux theory from nonequilibrium statistical mechanics as a general framework to quantify the global stability of ecological systems and provide warning signals for critical transitions. We quantify the average flux as the nonequilibrium driving force and the dynamical origin of the nonequilibrium transition while the entropy production rate as the nonequilibrium thermodynamic cost and thermodynamic origin of the nonequilibrium transition. Average flux, entropy production, nonequilibrium free energy, and time irreversibility quantified by the difference in cross-correlation functions forward and backward in time can serve as early warning signals for critical transitions much earlier than other conventional predictors. We utilize a classical shallow lake model as an exemplar for our early warning prediction. Our proposed method is general and can be readily applied to assess the resilience of many other ecological systems. The early warning signals proposed here can potentially predict critical transitions earlier than established methods and perhaps even sufficiently early to avert catastrophic shifts.
more »
« less
Anticipating regime shifts by mixing early warning signals from different nodes
Abstract Real systems showing regime shifts, such as ecosystems, are often composed of many dynamical elements interacting on a network. Various early warning signals have been proposed for anticipating regime shifts from observed data. However, it is unclear how one should combine early warning signals from different nodes for better performance. Based on theory of stochastic differential equations, we propose a method to optimize the node set from which to construct an early warning signal. The proposed method takes into account that uncertainty as well as the magnitude of the signal affects its predictive performance, that a large magnitude or small uncertainty of the signal in one situation does not imply the signal’s high performance, and that combining early warning signals from different nodes is often but not always beneficial. The method performs well particularly when different nodes are subjected to different amounts of dynamical noise and stress.
more »
« less
- Award ID(s):
- 2204936
- PAR ID:
- 10610791
- Publisher / Repository:
- Springer-Nature
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 15
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Successfully anticipating sudden major changes in complex systems is a practical concern. Such complex systems often form a heterogeneous network, which may show multi-stage transitions in which some nodes experience a regime shift earlier than others as an environment gradually changes. Here we investigate early warning signals for networked systems undergoing a multi-stage transition. We found that knowledge of both the ongoing multi-stage transition and network structure enables us to calculate effective early warning signals for multi-stage transitions. Furthermore, we found that small subsets of nodes could anticipate transitions as well as or even better than using all the nodes. Even if we fix the network and dynamical system, no single best subset of nodes provides good early warning signals, and a good choice of sentinel nodes depends on the tipping direction and the current stage of the dynamics within a multi-stage transition, which we systematically characterize.more » « less
-
Abstract In this era of global environmental change and rapid regime shifts, managing core areas that species require to survive and persist is a grand challenge for conservation. Wildlife monitoring data are often limited or local in scale. The emerging ability to map and track spatial regimes (i.e., the spatial manifestation of state transitions) using advanced geospatial vegetation data has the potential to provide earlier warnings of habitat loss because many species of conservation concern strongly avoid spatial regime boundaries. Using 23 yr of data for the lek locations of Greater Prairie‐Chicken (Tympanuchus cupido; GPC) in a remnant grassland ecosystem, we demonstrate how mapping changes in the boundaries between grassland and woodland spatial regimes provide a spatially explicit early warning signal for habitat loss for an iconic and vulnerable grassland‐obligate known to be highly sensitive to woody plant encroachment. We tested whether a newly proposed metric for the quantification of spatial regimes captured well‐known responses of GPC to woody plant expansion into grasslands. Resource selection functions showed that the grass:woody spatial regime boundary strength explained the probability of 80% of relative lek occurrence, and GPC strongly avoided grass:woody spatial regime boundaries at broad scales. Both findings are consistent with well‐known expectations derived from GPC ecology. These results provide strong evidence for vegetation‐derived delineations of spatial regimes to serve as generalized signals of early warning for state transitions that have major consequences to biodiversity conservation. Mapping spatial regime boundaries over time provided interpretable early warnings of habitat loss. Woody plant regimes displaced grassland regimes starting from the edges of the study area and constricting inward. Correspondingly, the relative probability of lek occurrence constricted in space. Similarly, the temporal trajectory of spatial regime boundary strength increased over time and moved closer to the observed limit of GPC lek site usage relative to grass:woody boundary strength. These novel spatial metrics allow managers to rapidly screen for early warning signals of spatial regime shifts and adapt management practices to defend and grow habitat cores at broad scales.more » « less
-
Abstract Research aimed at identifying indicators of persistent abrupt shifts in ecological communities, a.k.a regime shifts, has led to the development of a suite of early warning signals (EWSs). As these often perform inaccurately when applied to real-world observational data, it remains unclear whether critical transitions are the dominant mechanism of regime shifts and, if so, which EWS methods can predict them. Here, using multi-trophic planktonic data on multiple lakes from around the world, we classify both lake dynamics and the reliability of classic and second generation EWSs methods to predict whole-ecosystem change. We find few instances of critical transitions, with different trophic levels often expressing different forms of abrupt change. The ability to predict this change is highly processing dependant, with most indicators not performing better than chance, multivariate EWSs being weakly superior to univariate, and a recent machine learning model performing poorly. Our results suggest that predictive ecology should start to move away from the concept of critical transitions, developing methods suitable for predicting resilience loss not limited to the strict bounds of bifurcation theory.more » « less
-
Abstract Regime shifts have large consequences for ecosystems and the services they provide. However, understanding the potential for, causes of, proximity to, and thresholds for regime shifts in nearly all settings is difficult. Generic statistical indicators of resilience have been proposed and studied in a wide range of ecosystems as a method to detect when regime shifts are becoming more likely without direct knowledge of underlying system dynamics or thresholds. These early warning statistics (EWS) have been studied separately but there have been few examples that directly compare temporal and spatial EWS in ecosystem‐scale empirical data. To test these methods, we collected high‐frequency time series and high‐resolution spatial data during a whole‐lake fertilization experiment while also monitoring an adjacent reference lake. We calculated two common EWS, standard deviation and autocorrelation, in both time series and spatial data to evaluate their performance prior to the resulting algal bloom. We also applied the quickest detection method to generate binary alarms of resilience change from temporal EWS. One temporal EWS, rolling window standard deviation, provided advanced warning in most variables prior to the bloom, showing trends and between‐lake patterns consistent with theory. In contrast, temporal autocorrelation and both measures of spatial EWS (spatial SD, Moran's I) provided little or no warning. By compiling time series data from this and past experiments with and without nutrient additions, we were able to evaluate temporal EWS performance for both constant and changing resilience conditions. True positive alarm rates were 2.5–8.3 times higher for rolling window standard deviation when a lake was being pushed towards a bloom than the rate of false positives when it was not. For rolling window autocorrelation, alarm rates were much lower and no variable had a higher true positive than false positive alarm rate. Our findings suggest temporal EWS provide advanced warning of algal blooms and that this approach could help managers prepare for and/or minimize negative bloom impacts.more » « less
An official website of the United States government

