Abstract Given a sequence $$\{Z_d\}_{d\in \mathbb{N}}$$ of smooth and compact hypersurfaces in $${\mathbb{R}}^{n-1}$$, we prove that (up to extracting subsequences) there exists a regular definable hypersurface $$\Gamma \subset {\mathbb{R}}\textrm{P}^n$$ such that each manifold $$Z_d$$ is diffeomorphic to a component of the zero set on $$\Gamma$$ of some polynomial of degree $$d$$. (This is in sharp contrast with the case when $$\Gamma$$ is semialgebraic, where for example the homological complexity of the zero set of a polynomial $$p$$ on $$\Gamma$$ is bounded by a polynomial in $$\deg (p)$$.) More precisely, given the above sequence of hypersurfaces, we construct a regular, compact, semianalytic hypersurface $$\Gamma \subset {\mathbb{R}}\textrm{P}^{n}$$ containing a subset $$D$$ homeomorphic to a disk, and a family of polynomials $$\{p_m\}_{m\in \mathbb{N}}$$ of degree $$\deg (p_m)=d_m$$ such that $$(D, Z(p_m)\cap D)\sim ({\mathbb{R}}^{n-1}, Z_{d_m}),$$ i.e. the zero set of $$p_m$$ in $$D$$ is isotopic to $$Z_{d_m}$$ in $${\mathbb{R}}^{n-1}$$. This says that, up to extracting subsequences, the intersection of $$\Gamma$$ with a hypersurface of degree $$d$$ can be as complicated as we want. We call these ‘pathological examples’. In particular, we show that for every $$0 \leq k \leq n-2$$ and every sequence of natural numbers $$a=\{a_d\}_{d\in \mathbb{N}}$$ there is a regular, compact semianalytic hypersurface $$\Gamma \subset {\mathbb{R}}\textrm{P}^n$$, a subsequence $$\{a_{d_m}\}_{m\in \mathbb{N}}$$ and homogeneous polynomials $$\{p_{m}\}_{m\in \mathbb{N}}$$ of degree $$\deg (p_m)=d_m$$ such that (0.1)$$\begin{equation}b_k(\Gamma\cap Z(p_m))\geq a_{d_m}.\end{equation}$$ (Here $$b_k$$ denotes the $$k$$th Betti number.) This generalizes a result of Gwoździewicz et al. [13]. On the other hand, for a given definable $$\Gamma$$ we show that the Fubini–Study measure, in the Gaussian probability space of polynomials of degree $$d$$, of the set $$\Sigma _{d_m,a, \Gamma }$$ of polynomials verifying (0.1) is positive, but there exists a constant $$c_\Gamma$$ such that $$\begin{equation*}0<{\mathbb{P}}(\Sigma_{d_m, a, \Gamma})\leq \frac{c_{\Gamma} d_m^{\frac{n-1}{2}}}{a_{d_m}}.\end{equation*}$$ This shows that the set of ‘pathological examples’ has ‘small’ measure (the faster $$a$$ grows, the smaller the measure and pathologies are therefore rare). In fact we show that given $$\Gamma$$, for most polynomials a Bézout-type bound holds for the intersection $$\Gamma \cap Z(p)$$: for every $$0\leq k\leq n-2$$ and $t>0$: $$\begin{equation*}{\mathbb{P}}\left(\{b_k(\Gamma\cap Z(p))\geq t d^{n-1} \}\right)\leq \frac{c_\Gamma}{td^{\frac{n-1}{2}}}.\end{equation*}$$
more »
« less
An Improved Eigenvalue Estimate for Embedded Minimal Hypersurfaces in the Sphere
Abstract Suppose that $$\Sigma ^{n}\subset \mathbb{S}^{n+1}$$ is a closed embedded minimal hypersurface. We prove that the first non-zero eigenvalue $$\lambda _{1}$$ of the induced Laplace–Beltrami operator on $$\Sigma $$ satisfies $$\lambda _{1} \geq \frac{n}{2}+ a_{n}(\Lambda ^{6} + b_{n})^{-1}$$, where $$a_{n}$$ and $$b_{n}$$ are explicit dimensional constants and $$\Lambda $$ is an upper bound for the length of the second fundamental form of $$\Sigma $$. This provides the first explicitly computable improvement on Choi and Wang’s lower bound $$\lambda _{1} \geq \frac{n}{2}$$ without any further assumptions on $$\Sigma $$.
more »
« less
- Award ID(s):
- 2154219
- PAR ID:
- 10610851
- Publisher / Repository:
- Oxford Academics
- Date Published:
- Journal Name:
- International Mathematics Research Notices
- Volume:
- 2024
- Issue:
- 18
- ISSN:
- 1073-7928
- Page Range / eLocation ID:
- 12556 to 12567
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The classic graphical Cheeger inequalities state that if $$M$$ is an $$n\times n$$ \emph{symmetric} doubly stochastic matrix, then \[ \frac{1-\lambda_{2}(M)}{2}\leq\phi(M)\leq\sqrt{2\cdot(1-\lambda_{2}(M))} \] where $$\phi(M)=\min_{S\subseteq[n],|S|\leq n/2}\left(\frac{1}{|S|}\sum_{i\in S,j\not\in S}M_{i,j}\right)$$ is the edge expansion of $$M$$, and $$\lambda_{2}(M)$$ is the second largest eigenvalue of $$M$$. We study the relationship between $$\phi(A)$$ and the spectral gap $$1-\re\lambda_{2}(A)$$ for \emph{any} doubly stochastic matrix $$A$$ (not necessarily symmetric), where $$\lambda_{2}(A)$$ is a nontrivial eigenvalue of $$A$$ with maximum real part. Fiedler showed that the upper bound on $$\phi(A)$$ is unaffected, i.e., $$\phi(A)\leq\sqrt{2\cdot(1-\re\lambda_{2}(A))}$$. With regards to the lower bound on $$\phi(A)$$, there are known constructions with \[ \phi(A)\in\Theta\left(\frac{1-\re\lambda_{2}(A)}{\log n}\right), \] indicating that at least a mild dependence on $$n$$ is necessary to lower bound $$\phi(A)$$. In our first result, we provide an \emph{exponentially} better construction of $$n\times n$$ doubly stochastic matrices $$A_{n}$$, for which \[ \phi(A_{n})\leq\frac{1-\re\lambda_{2}(A_{n})}{\sqrt{n}}. \] In fact, \emph{all} nontrivial eigenvalues of our matrices are $$0$$, even though the matrices are highly \emph{nonexpanding}. We further show that this bound is in the correct range (up to the exponent of $$n$$), by showing that for any doubly stochastic matrix $$A$$, \[ \phi(A)\geq\frac{1-\re\lambda_{2}(A)}{35\cdot n}. \] As a consequence, unlike the symmetric case, there is a (necessary) loss of a factor of $$n^{\alpha}$ for $$\frac{1}{2}\leq\alpha\leq1$$ in lower bounding $$\phi$$ by the spectral gap in the nonsymmetric setting. Our second result extends these bounds to general matrices $$R$$ with nonnegative entries, to obtain a two-sided \emph{gapped} refinement of the Perron-Frobenius theorem. Recall from the Perron-Frobenius theorem that for such $$R$$, there is a nonnegative eigenvalue $$r$$ such that all eigenvalues of $$R$$ lie within the closed disk of radius $$r$$ about $$0$$. Further, if $$R$$ is irreducible, which means $$\phi(R)>0$$ (for suitably defined $$\phi$$), then $$r$$ is positive and all other eigenvalues lie within the \textit{open} disk, so (with eigenvalues sorted by real part), $$\re\lambda_{2}(R)more » « less
-
Abstract We determine, up to multiplicative constants, the number of integers $$n\leq x$$ that have a divisor in $(y,2y]$ and no prime factor $$\leq w$$ . Our estimate is uniform in $x,y,w$ . We apply this to determine the order of the number of distinct integers in the $$N\times N$$ multiplication table, which are free of prime factors $$\leq w$$ , and the number of distinct fractions of the form $$(a_{1}a_{2})/(b_{1}b_{2})$$ with $$1\leq a_{1}\leq b_{1}\leq N$$ and $$1\leq a_{2}\leq b_{2}\leq N$$ .more » « less
-
Abstract In 1980 Carleson posed a question on the minimal regularity of an initial data function in a Sobolev space $$H^s({\mathbb {R}}^n)$$ that implies pointwise convergence for the solution of the linear Schrödinger equation. After progress by many authors, this was recently resolved (up to the endpoint) by Bourgain, whose counterexample construction for the Schrödinger maximal operator proved a necessary condition on the regularity, and Du and Zhang, who proved a sufficient condition. Analogues of Carleson’s question remain open for many other dispersive partial differential equations. We develop a flexible new method to approach such problems and prove that for any integer $$k\geq 2$$, if a degree $$k$$ generalization of the Schrödinger maximal operator is bounded from $$H^s({\mathbb {R}}^n)$$ to $$L^1(B_n(0,1))$$, then $$s \geq \frac {1}{4} + \frac {n-1}{4((k-1)n+1)}.$$ In dimensions $$n \geq 2$$, for every degree $$k \geq 3$$, this is the first result that exceeds a long-standing barrier at $1/4$. Our methods are number-theoretic, and in particular apply the Weil bound, a consequence of the truth of the Riemann Hypothesis over finite fields.more » « less
-
Abstract We construct a family of PBWD (Poincaré-Birkhoff-Witt-Drinfeld) bases for the positive subalgebras of quantum loop algebras of type $$B_{n}$$ and $$G_{2}$$, as well as their Lusztig and RTT (for type $$B_{n}$$ only) integral forms, in the new Drinfeld realization. We also establish a shuffle algebra realization of these $${\mathbb {Q}}(v)$$-algebras (proved earlier in [26] by completely different tools) and generalize the latter to the above $${{\mathbb {Z}}}[v,v^{-1}]$$-forms. The rational counterparts provide shuffle algebra realizations of positive subalgebras of type $$B_{n}$$ and $$G_{2}$$ Yangians and their Drinfeld-Gavarini duals. All of this generalizes the type $$A_{n}$$ results of [30].more » « less
An official website of the United States government

