The carbon footprint associated with large language models (LLMs) is a significant concern, encompassing emissions from their training, inference, experimentation, and storage processes, including operational and embodied carbon emissions. An essential aspect is accurately estimating the carbon impact of emerging LLMs even before their training, which heavily relies on GPU usage. Existing studies have reported the carbon footprint of LLM training, but only one tool, mlco2, can predict the carbon footprint of new neural networks prior to physical training. However, mlco2 has several serious limitations. It cannot extend its estimation to dense or mixture-of-experts (MoE) LLMs, disregards critical architectural parameters, focuses solely on GPUs, and cannot model embodied carbon footprints. Addressing these gaps, we introduce \textit{\carb}, an end-to-end carbon footprint projection model designed for both dense and MoE LLMs. Compared to mlco2, \carb~significantly enhances the accuracy of carbon footprint estimations for various LLMs. The source code is released at \url{https://github.com/SotaroKaneda/MLCarbon}.
more »
« less
This content will become publicly available on December 10, 2025
CuMo: Scaling Multimodal LLM with Co-Upcycled Mixture-of-Experts
Recent advancements in Multimodal Large Language Models (LLMs) have focused primarily on scaling by increasing text-image pair data and enhancing LLMs to improve performance on multimodal tasks. However, these scaling approaches are computationally expensive and overlook the significance of efficiently improving model capabilities from the vision side. Inspired by the successful applications of Mixture-of-Experts (MoE) in LLMs, which improves model scalability during training while keeping inference costs similar to those of smaller models, we propose CuMo, which incorporates Co-upcycled Top-K sparsely-gated Mixtureof-experts blocks into both the vision encoder and the MLP connector, thereby enhancing the multimodal LLMs with neglectable additional activated parameters during inference. CuMo first pre-trains the MLP blocks and then initializes each expert in the MoE block from the pre-trained MLP block during the visual instruction tuning stage, with auxiliary losses to ensure a balanced loading of experts. CuMo outperforms state-of-the-art multimodal LLMs across various VQA and visual-instruction-following benchmarks within each model size group, all while training exclusively on open-sourced datasets.
more »
« less
- Award ID(s):
- 2427478
- PAR ID:
- 10611024
- Publisher / Repository:
- NeurIPS 2024
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Dense linear layers are the dominant computational bottleneck in large neural networks, presenting a critical need for more efficient alternatives. Previous efforts focused on a small number of hand-crafted structured matrices and neglected to investigate whether these structures can surpass dense layers in terms of compute-optimal scaling laws when both the model size and training examples are optimally allocated. In this work, we present a unifying framework that enables searching among all linear operators expressible via an Einstein summation. This framework encompasses many previously proposed structures, such as low-rank, Kronecker, Tensor-Train, Block Tensor-Train (BTT), and Monarch, along with many novel structures. To analyze the framework, we develop a taxonomy of all such operators based on their computational and algebraic properties and show that differences in the compute-optimal scaling laws are mostly governed by a small number of variables that we introduce. Namely, a small ω (which measures parameter sharing) and large ψ (which measures the rank) reliably led to better scaling laws. Guided by the insight that full-rank structures that maximize parameters per unit of compute perform the best, we propose BTT-MoE, a novel Mixture-of-Experts (MoE) architecture obtained by sparsifying computation in the BTT structure. In contrast to the standard sparse MoE for each entire feed-forward network, BTT-MoE learns an MoE in every single linear layer of the model, including the projection matrices in the attention blocks. We find BTT-MoE provides a substantial compute-efficiency gain over dense layers and standard MoE.more » « less
-
Vision Transformers (ViTs) have shown impressive performance and have become a unified backbone for multiple vision tasks. However, both the attention mechanism and multi-layer perceptrons (MLPs) in ViTs are not sufficiently efficient due to dense multiplications, leading to costly training and inference. To this end, we propose to reparameterize pre-trained ViTs with a mixture of multiplication primitives, e.g., bitwise shifts and additions, towards a new type of multiplication-reduced model, dubbed ShiftAddViT, which aims to achieve end-to-end inference speedups on GPUs without requiring training from scratch. Specifically, all MatMuls among queries, keys, and values are reparameterized using additive kernels, after mapping queries and keys to binary codes in Hamming space. The remaining MLPs or linear layers are then reparameterized with shift kernels. We utilize TVM to implement and optimize those customized kernels for practical hardware deployment on GPUs. We find that such a reparameterization on (quadratic or linear) attention maintains model accuracy, while inevitably leading to accuracy drops when being applied to MLPs. To marry the best of both worlds, we further propose a new mixture of experts (MoE) framework to reparameterize MLPs by taking multiplication or its primitives as experts, e.g., multiplication and shift, and designing a new latency-aware load-balancing loss. Such a loss helps to train a generic router for assigning a dynamic amount of input tokens to different experts according to their latency. In principle, the faster the experts run, the more input tokens they are assigned. Extensive experiments on various 2D/3D Transformer-based vision tasks consistently validate the effectiveness of our proposed ShiftAddViT, achieving up to 5.18x latency reductions on GPUs and 42.9% energy savings, while maintaining a comparable accuracy as original or efficient ViTs. Codes and models are available at https://github.com/GATECH-EIC/ShiftAddViT.more » « less
-
There has been a growing interest in developing multimodal machine translation (MMT) systems that enhance neural machine translation (NMT) with visual knowledge. This problem setup involves using images as auxiliary information during training, and more recently, eliminating their use during inference. Towards this end, previous works face a challenge in training powerful MMT models from scratch due to the scarcity of annotated multilingual vision-language data, especially for low-resource languages. Simultaneously, there has been an influx of multilingual pretrained models for NMT and multimodal pre-trained models for vision-language tasks, primarily in English, which have shown exceptional generalisation ability. However, these are not directly applicable to MMT since they do not provide aligned multimodal multilingual features for generative tasks. To alleviate this issue, instead of designing complex modules for MMT, we propose CLIPTrans, which simply adapts the independently pre-trained multimodal M-CLIP and the multilingual mBART. In order to align their embedding spaces, mBART is conditioned on the M-CLIP features by a prefix sequence generated through a lightweight mapping network. We train this in a two-stage pipeline which warms up the model with image captioning before the actual translation task. Through experiments, we demonstrate the merits of this framework and consequently push forward the state-of-the-art across standard benchmarks by an average of +2.67 BLEU. The code can be found at www.github.com/devaansh100/CLIPTrans.more » « less
-
Generative large language models (LLMs) exhibit impressive capabilities, which can be further augmented by integrating a pre-trained vision model into the original LLM to create a multimodal LLM (MLLM). However, this integration often significantly decreases performance on natural language understanding and generation tasks, compared to the original LLM. This study investigates this issue using the LLaVA MLLM, treating the integration as a continual learning problem. We evaluate five continual learning methods to mitigate forgetting and identify a technique that enhances visual understanding while minimizing linguistic performance loss. Our approach reduces linguistic performance degradation by up to 15% over the LLaVA recipe, while maintaining high multimodal accuracy. We also demonstrate the robustness of our method through continual learning on a sequence of vision-language tasks, effectively preserving linguistic skills while acquiring new multimodal capabilities.more » « less
An official website of the United States government
