skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2427478

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The ability to accurately interpret complex visual information is a crucial topic of multimodal large language models (MLLMs). Recent work indicates that enhanced visual perception significantly reduces hallucinations and improves performance on resolution-sensitive tasks, such as optical character recognition and document analysis. A number of recent MLLMs achieve this goal using a mixture of vision encoders. Despite their success, there is a lack of systematic comparisons and detailed ablation studies addressing critical aspects, such as expert selection and the integration of multiple vision experts. This study provides an extensive exploration of the design space for MLLMs using a mixture of vision encoders and resolutions. Our findings reveal several underlying principles common to various existing strategies, leading to a streamlined yet effective design approach. We discover that simply concatenating visual tokens from a set of complementary vision encoders is as effective as more complex mixing architectures or strategies. We additionally introduce Pre-Alignment to bridge the gap between vision-focused encoders and language tokens, enhancing model coherence. The resulting family of MLLMs, Eagle, surpasses other leading open-source models on major MLLM benchmarks. 
    more » « less
    Free, publicly-accessible full text available April 24, 2026
  2. Neighborhood attention reduces the cost of self attention by restricting each token’s attention span to its nearest neighbors. This restriction, parameterized by a window size and dilation factor, draws a spectrum of possible attention patterns between linear projection and self attention. Neighborhood attention, and more generally sliding window attention patterns, have long been bounded by infrastructure, particularly in higher-rank spaces (2-D and 3-D), calling for the development of custom kernels, which have been limited in either functionality, or performance, if not both. In this work, we aim to massively improve upon existing infrastructure by providing two new methods for implementing neighborhood attention. We first show that neighborhood attention can be represented as a batched GEMM problem, similar to standard attention, and implement it for 1-D and 2-D neighborhood attention. These kernels on average provide 895% and 272% improvement in full precision runtime compared to existing naive CUDA kernels for 1-D and 2-D neighborhood attention respectively. We find that aside from being heavily bound by memory bandwidth, certain inherent inefficiencies exist in all unfused implementations of neighborhood attention, which in most cases undo their theoretical efficiency gain. Motivated by the progress made into fused dot-product attention kernels, we developed fused neighborhood attention; an adaptation of fused dot-product attention kernels that allow fine-grained control over attention across different spatial axes. Known for reducing the quadratic time complexity of self attention to a linear complexity, neighborhood attention can now enjoy a reduced and constant memory footprint, and record-breaking half precision runtime. We observe that our fused implementation successfully circumvents some of the unavoidable inefficiencies in unfused implementations. While our unfused GEMM-based kernels only improve half precision performance compared to naive kernels by an average of 548% and 193% in 1-D and 2-D problems respectively, our fused kernels improve naive kernels by an average of 1759% and 958% in 1-D and 2-D problems respectively. These improvements translate into up to 104% improvement in inference and 39% improvement in training existing models based on neighborhood attention, and additionally extend its applicability to image and video perception, as well as other modalities. 
    more » « less
  3. Recent advancements in Multimodal Large Language Models (LLMs) have focused primarily on scaling by increasing text-image pair data and enhancing LLMs to improve performance on multimodal tasks. However, these scaling approaches are computationally expensive and overlook the significance of efficiently improving model capabilities from the vision side. Inspired by the successful applications of Mixture-of-Experts (MoE) in LLMs, which improves model scalability during training while keeping inference costs similar to those of smaller models, we propose CuMo, which incorporates Co-upcycled Top-K sparsely-gated Mixtureof-experts blocks into both the vision encoder and the MLP connector, thereby enhancing the multimodal LLMs with neglectable additional activated parameters during inference. CuMo first pre-trains the MLP blocks and then initializes each expert in the MoE block from the pre-trained MLP block during the visual instruction tuning stage, with auxiliary losses to ensure a balanced loading of experts. CuMo outperforms state-of-the-art multimodal LLMs across various VQA and visual-instruction-following benchmarks within each model size group, all while training exclusively on open-sourced datasets. 
    more » « less
  4. Few-shot fine-tuning of text-to-image (T2I) generation models enables people to create unique images in their own style using natural languages without requiring extensive prompt engineering. However, fine-tuning with only a handful, as little as one, of image-text paired data prevents fine-grained control of style attributes at generation. In this paper, we present FineStyle, a few-shot fine-tuning method that allows enhanced controllability for style personalized text-to-image generation. To overcome the lack of training data for fine-tuning, we propose a novel conceptoriented data scaling that amplifies the number of image-text pair, each of which focuses on different concepts (e.g., objects) in the style reference image. We also identify the benefit of parameter-efficient adapter tuning of key and value kernels of cross-attention layers. Extensive experiments show the effectiveness of FineStyle at following fine-grained text prompts and delivering visual quality faithful to the specified style, measured by CLIP scores and human raters. 
    more » « less