skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 14, 2026

Title: Compactifications of pseudofinite and pseudoamenable groups
We first give simplified and corrected accounts of some results in work by Pillay (2017) on compactifications of pseudofinite groups. For instance, we use a classical theorem of Turing (1938) to give a simplified proof that any definable compactification of a pseudofinite group has an abelian connected component. We then discuss the relationship between Turing’s work, the Jordan–Schur theorem, and a (relatively) more recent result of Kazhdan (1982) on approximate homomorphisms, and we use this to widen our scope from finite groups to amenable groups. In particular, we develop a suitable continuous logic framework for dealing with definable homomorphisms from pseudoamenable groups to compact Lie groups. Together with the stabilizer theorems of Hrushovski (2012) and Montenegro et al. (2020), we obtain a uniform (but non-quantitative) analogue of Bogolyubov’s lemma for sets of positive measure in discrete amenable groups. We conclude with brief remarks on the case of amenable topological groups.  more » « less
Award ID(s):
2452816
PAR ID:
10611103
Author(s) / Creator(s):
; ;
Publisher / Repository:
European Mathematical Society
Date Published:
Journal Name:
Groups, Geometry, and Dynamics
ISSN:
1661-7207
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We give examples of (i) a simple theory with a formula (with parameters) which does not fork over [Formula: see text] but has [Formula: see text]-measure 0 for every automorphism invariant Keisler measure [Formula: see text] and (ii) a definable group [Formula: see text] in a simple theory such that [Formula: see text] is not definably amenable, i.e. there is no translation invariant Keisler measure on [Formula: see text]. We also discuss paradoxical decompositions both in the setting of discrete groups and of definable groups, and prove some positive results about small theories, including the definable amenability of definable groups. 
    more » « less
  2. Abstract We show that for every countable group, any sequence of approximate homomorphisms with values in permutations can be realized as the restriction of a sofic approximation of an orbit equivalence relation. Moreover, this orbit equivalence relation is uniquely determined by the invariant random subgroup of the approximate homomorphisms. We record applications of this result to recover various known stability and conjugacy characterizations for almost homomorphisms of amenable groups. 
    more » « less
  3. We prove a generalization of the Elekes–Szabó theorem [G. Elekes and E. Szabó, How to find groups? (and how to use them in Erdos geometry?), Combinatorica 32(5) 537–571 (2012)] for relations definable in strongly minimal structures that are interpretable in distal structures. 
    more » « less
  4. First, we prove a theorem on dynamics of actions of monoids by endomorphisms of semigroups. Second, we introduce algebraic structures suitable for formalizing infinitary Ramsey statements and prove a theorem that such statements are implied by the existence of appropriate homomorphisms between the algebraic structures. We make a connection between the two themes above, which allows us to prove some general Ramsey theorems for sequences. We give a new proof of the Furstenberg–Katznelson Ramsey theorem; in fact, we obtain a version of this theorem that is stronger than the original one. We answer in the negative a question of Lupini on possible extensions of Gowers’ Ramsey theorem. 
    more » « less
  5. The complexity of graph homomorphism problems has been the subject of intense study for some years. In this paper, we prove a decidable complexity dichotomy theorem for the partition function of directed graph homomorphisms. Our theorem applies to all non-negative weighted forms of the problem: given any fixed matrix A with non-negative algebraic entries, the partition function ZA(G) of directed graph homomorphisms from any directed graph G is either tractable in polynomial time or #P-hard, depending on the matrix A. The proof of the dichotomy theorem is combinatorial, but involves the definition of an infinite family of graph homomorphism problems. The proof of its decidability on the other hand is algebraic and based on properties of polynomials. 
    more » « less