skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Nodes for modes: Nodal honeycomb metamaterial enables a soft robot with multimodal locomotion
Soft-bodied animals, such as worms and snakes, use many muscles in different ways to traverse unstructured environments and inspire tools for accessing confined spaces. They demonstrate versatility of locomotion which is essential for adaptation to changing terrain conditions. However, replicating such versatility in untethered soft-bodied robots with multimodal locomotion capabilities have been challenging due to complex fabrication processes and limitations of soft body structures to accommodate hardware such as actuators, batteries and circuit boards. Here, we present MetaCrawler, a 3D printed metamaterial soft robot designed for multimodal and omnidirectional locomotion. Our design approach facilitated an easy fabrication process through a discrete assembly of a modular nodal honeycomb lattice with soft and hard components. A crucial benefit of the nodal honeycomb architecture is the ability of its hard components, nodes, to accommodate a distributed actuation system, comprising servomotors, control circuits, and batteries. Enabled by this distributed actuation, MetaCrawler achieves five locomotion modes: peristalsis, sidewinding, sideways translation, turn-in-place, and anguilliform. Demonstrations showcase MetaCrawler’s adaptability in confined channel navigation, vertical traversing, and maze exploration. This soft robotic system holds the potential to offer easy-to-fabricate and accessible solutions for multimodal locomotion in applications such as search and rescue, pipeline inspection, and space missions.  more » « less
Award ID(s):
2047330
PAR ID:
10611304
Author(s) / Creator(s):
; ;
Publisher / Repository:
IOP Science
Date Published:
Journal Name:
Bioinspiration & Biomimetics
Volume:
19
Issue:
4
ISSN:
1748-3182
Page Range / eLocation ID:
046002
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Magnetic actuation has emerged as a powerful and versatile mechanism for diverse applications, ranging from soft robotics, biomedical devices to functional metamaterials. This highly interdisciplinary research calls for an easy to use and efficient modeling/simulation platform that can be leveraged by researchers with different backgrounds. Here we present a lattice model for hard-magnetic soft materials by partitioning the elastic deformation energy into lattice stretching and volumetric change, so-called ‘magttice’. Magnetic actuation is realized through prescribed nodal forces in magttice. We further implement the model into the framework of a large-scale atomic/molecular massively parallel simulator (LAMMPS) for highly efficient parallel simulations. The magttice is first validated by examining the deformation of ferromagnetic beam structures, and then applied to various smart structures, such as origami plates and magnetic robots. After investigating the static deformation and dynamic motion of a soft robot, the swimming of the magnetic robot in water, like jellyfish's locomotion, is further studied by coupling the magttice and lattice Boltzmann method (LBM). These examples indicate that the proposed magttice model can enable more efficient mechanical modeling and simulation for the rational design of magnetically driven smart structures. 
    more » « less
  2. Abstract Diverse and adaptable modes of complex motion observed at different scales in living creatures are challenging to reproduce in robotic systems. Achieving dexterous movement in conventional robots can be difficult due to the many limitations of applying rigid materials. Robots based on soft materials are inherently deformable, compliant, adaptable, and adjustable, making soft robotics conducive to creating machines with complicated actuation and motion gaits. This review examines the mechanisms and modalities of actuation deformation in materials that respond to various stimuli. Then, strategies based on composite materials are considered to build toward actuators that combine multiple actuation modes for sophisticated movements. Examples across literature illustrate the development of soft actuators as free‐moving, entirely soft‐bodied robots with multiple locomotion gaits via careful manipulation of external stimuli. The review further highlights how the application of soft functional materials into robots with rigid components further enhances their locomotive abilities. Finally, taking advantage of the shape‐morphing properties of soft materials, reconfigurable soft robots have shown the capacity for adaptive gaits that enable transition across environments with different locomotive modes for optimal efficiency. Overall, soft materials enable varied multimodal motion in actuators and robots, positioning soft robotics to make real‐world applications for intricate and challenging tasks. 
    more » « less
  3. Abstract For soft robots to have ubiquitous adoption in practical applications they require soft actuators that provide well‐rounded actuation performance that parallels natural muscle while being inexpensive and easily fabricated. This manuscript introduces a toolkit to rapidly prototype, manufacture, test, and power various designs of hydraulically amplified self‐healing electrostatic (HASEL) actuators with muscle‐like performance that achieve all three basic modes of actuation (expansion, contraction, and rotation). This toolkit utilizes easy‐to‐implement methods, inexpensive fabrication tools, commodity materials, and off‐the‐shelf high‐voltage electronics thereby enabling a wide audience to explore HASEL technology. Remarkably, the actuators created from this easy‐to‐implement toolkit achieve linear strains exceeding 100%, a specific power greater than 150 W kg−1, and ≈20% strain at frequencies above 100 Hz. This combination of large strain, extreme speed, and high specific power yields soft actuators that jump without power‐amplifying mechanisms. Additionally, an efficient fabrication technique is introduced for modular designs of HASEL actuators, which is used to develop soft robotic devices driven by portable electronics. Inspired by the versatility of elephant trunks, the above capabilities are combined to create an untethered continuum robot for grasping and manipulating delicate objects, highlighting the wide potential of the introduced methods for soft robots with increasing sophistication. 
    more » « less
  4. Sensing and actuation are intricately connected in soft robotics, where contact may change actuator mechanics and robot behavior. To improve soft robotic control and performance, proprioception and contact sensors are needed to report robot state without altering actuation mechanics or introducing bulky, rigid components. For bioinspired McKibben-style fluidic actuators, prior work in sensing has focused on sensing the strain of the actuator by embedding sensors in the actuator bladder during fabrication, or by adhering sensors to the actuator surface after fabrication. However, material property mismatches between sensors and actuators can impede actuator performance, and many soft sensors available for use with fluidic actuators rely on costly or labor-intensive fabrication methods. Here, we demonstrate a low-cost and easy-to manufacture-tubular liquid metal strain sensor for use with soft actuators that can be used to detect actuator strain and contact between the actuator and external objects. The sensor is flexible, can be fabricated with commercial-off-the-shelf components, and can be easily integrated with existing soft actuators to supplement sensing, regardless of actuator shape or size. Furthermore, the soft tubular strain sensor exhibits low hysteresis and high sensitivity. The approach presented in this work provides a low-cost, soft sensing solution for broad application in soft robotics. 
    more » « less
  5. The recent popularity of soft robots for marine applications has established a need for the reliable fabrication of actuators that enable locomotion, articulation, and grasping in aquatic environments. These actuators should also reduce the negative impact on sensitive ecosystems by using biodegradable materials such as organic hydrogels. Freeform Reversible Embedding of Suspended Hydrogels (FRESH) printing can be used for additive manufacturing of small-scale biologically derived, marine-sourced hydraulic actuators by printing thin-wall structures out of sustainably sourced calcium-alginate hydrogels. However, controlling larger alginate robots with complex geometries and multiple actuation mechanisms remains challenging due to the reduced strength of such soft structures. For tethered hydrogel hydraulic robots, a direct interface with fluid lines is necessary for actuation, but the drag forces associated with tethered lines can quickly overcome the actuation force of distal and extremity structures. To overcome this challenge, in this study, we identify printing parameters and interface geometries to allow the working fluid to be channeled to distal components of FRESH-printed alginate robots and demonstrate a proof-of-concept biodegradable robotic arm for small object manipulation and grasping in marine environments. 
    more » « less