Abstract Despite the impressive performance of recent marine robots, many of their components are non‐biodegradable or even toxic and may negatively impact sensitive ecosystems. To overcome these limitations, biologically‐sourced hydrogels are a candidate material for marine robotics. Recent advances in embedded 3D printing have expanded the design freedom of hydrogel additive manufacturing. However, 3D printing small‐scale hydrogel‐based actuators remains challenging. In this study, Free form reversible embedding of suspended hydrogels (FRESH) printing is applied to fabricate small‐scale biologically‐derived, marine‐sourced hydraulic actuators by printing thin‐wall structures that are water‐tight and pressurizable. Calcium‐alginate hydrogels are used, a sustainable biomaterial sourced from brown seaweed. This process allows actuators to have complex shapes and internal cavities that are difficult to achieve with traditional fabrication techniques. Furthermore, it demonstrates that fabricated components are biodegradable, safely edible, and digestible by marine organisms. Finally, a reversible chelation‐crosslinking mechanism is implemented to dynamically modify alginate actuators' structural stiffness and morphology. This study expands the possible design space for biodegradable marine robots by improving the manufacturability of complex soft devices using biologically‐sourced materials.
more »
« less
FRESH-Printing of a Multi-actuator Biodegradable Robot Arm for Articulation and Grasping
The recent popularity of soft robots for marine applications has established a need for the reliable fabrication of actuators that enable locomotion, articulation, and grasping in aquatic environments. These actuators should also reduce the negative impact on sensitive ecosystems by using biodegradable materials such as organic hydrogels. Freeform Reversible Embedding of Suspended Hydrogels (FRESH) printing can be used for additive manufacturing of small-scale biologically derived, marine-sourced hydraulic actuators by printing thin-wall structures out of sustainably sourced calcium-alginate hydrogels. However, controlling larger alginate robots with complex geometries and multiple actuation mechanisms remains challenging due to the reduced strength of such soft structures. For tethered hydrogel hydraulic robots, a direct interface with fluid lines is necessary for actuation, but the drag forces associated with tethered lines can quickly overcome the actuation force of distal and extremity structures. To overcome this challenge, in this study, we identify printing parameters and interface geometries to allow the working fluid to be channeled to distal components of FRESH-printed alginate robots and demonstrate a proof-of-concept biodegradable robotic arm for small object manipulation and grasping in marine environments.
more »
« less
- Award ID(s):
- 2015317
- PAR ID:
- 10517565
- Publisher / Repository:
- Springer, Cham.
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Stimuli-responsive hydrogels are candidate building blocks for soft robotic applications due to many of their unique properties, including tunable mechanical properties and biocompatibility. Over the past decade, there has been significant progress in developing soft and biohybrid actuators using naturally occurring and synthetic hydrogels to address the increasing demands for machines capable of interacting with fragile biological systems. Recent advancements in three-dimensional (3D) printing technology, either as a standalone manufacturing process or integrated with traditional fabrication techniques, have enabled the development of hydrogel-based actuators with on-demand geometry and actuation modalities. This mini-review surveys existing research efforts to inspire the development of novel fabrication techniques using hydrogel building blocks and identify potential future directions. In this article, existing 3D fabrication techniques for hydrogel actuators are first examined. Next, existing actuation mechanisms, including pneumatic, hydraulic, ionic, dehydration-rehydration, and cell-powered actuation, are reviewed with their benefits and limitations discussed. Subsequently, the applications of hydrogel-based actuators, including compliant handling of fragile items, micro-swimmers, wearable devices, and origami structures, are described. Finally, challenges in fabricating functional actuators using existing techniques are discussed.more » « less
-
Abstract Soft robots composed of elastic materials can exhibit nonlinear behaviors, such as variable stiffness and adaptable deformation, that are favorable to cooperation with humans. These characteristics enable soft robots to be used in multiple applications, ranging from minimally invasive surgery and search and rescue in emergency or hazardous environments to marine or space exploration and assistive devices for people with musculoskeletal disorders. Although soft actuators composed of smart materials have been proposed as a control strategy for soft robots, most studies have focused on traditional actuators using hydraulic or pneumatic pressure. Over the years, these have made a lot of progress, but they have not been able to overcome the limitations of the complex configuration of the system and the expansion of the cross-section of the actuator when contracted. This paper merges the actuator design methodology for smart materials with the mechanical analysis of auxetic structures to present an electrically driven soft actuator architecture that achieves reliable actuation displacements. This novel soft actuator, constructed with contractile SMA springs and flexible auxetic metamaterials (FAM), has a spontaneous recovery of the shape after a contraction, a negative Poisson’s ratio, and over 90% of consistency with the performance predictions at the design stage. Our research presents a methodology for the design of a new electrically driven soft actuator, describes the manufacture of SMA springs and FAM, and concludes with the validation of the design by experimental analysis using the 2D planar soft actuator prototype. Finally, our study revealed that the application of the extraordinary characteristics of smart materials and structures together into a single architecture can be a strategy to overcome the limitations of existing soft actuator studies.more » « less
-
Fluid‐driven artificial muscles exhibit a behavior similar to biological muscles which makes them attractive as soft actuators for wearable assistive robots. However, state‐of‐the‐art fluidic systems typically face challenges to meet the multifaceted needs of soft wearable robots. First, soft robots are usually constrained to tethered pressure sources or bulky configurations based on flow control valves for delivery and control of high assistive forces. Second, although some soft robots exhibit untethered operation, they are significantly limited to low force capabilities. Herein, an electrohydraulic actuation system that enables both untethered and high‐force soft wearable robots is presented. This solution is achieved through a twofold design approach. First, a simplified direct‐drive actuation paradigm composed of motor, gear‐pump, and hydraulic artificial muscle (HAM) is proposed, which allows for a compact and lightweight (1.6 kg) valveless design. Second, a fluidic engine composed of a high‐torque motor with a custom‐designed gear pump is created, which is capable of generating high pressure (up to 0.75 MPa) to drive the HAM in delivering high forces (580 N). Experimental results show that the developed fluidic engine significantly outperforms state‐of‐the‐art systems in mechanical efficiency and suggest opportunities for effective deployment in soft wearable robots for human assistance.more » « less
-
Hydrogels are candidate building blocks in a wide range of biomaterial applications including soft and biohybrid robotics, microfluidics, and tissue engineering. Recent advances in embedded 3D printing have broadened the design space accessible with hydrogel additive manufacturing. Specifically, the Freeform Reversible Embedding of Suspended Hydrogels (FRESH) technique has enabled the fabrication of complex 3D structures using extremely soft hydrogels, e.g., alginate and collagen, by assembling hydrogels within a fugitive support bath. However, the low structural rigidity of FRESH printed hydrogels limits their applications, especially those that require operation in nonaqueous environments. In this study, we demonstrated long-fiber embedded hydrogel 3D printing using a multihead printing platform consisting of a custom-built fiber extruder and an open-source FRESH bioprinter with high embedding fidelity. Using this process, fibers were embedded in 3D printed hydrogel components to achieve significant structural reinforcement (e.g., tensile modulus improved from 56.78 ± 8.76 to 382.55 ± 25.29 kPa and tensile strength improved from 9.44 ± 2.28 to 45.05 ± 5.53 kPa). In addition, we demonstrated the versatility of this technique by using fibers of a wide range of sizes and material types and implementing different 2D and 3D embedding patterns, such as embedding a conical helix using electrochemically aligned collagen fiber via nonplanar printing. Moreover, the technique was implemented using low-cost material and is compatible with open-source software and hardware, which facilitates its adoption and modification for new research applications.more » « less