We study the gauging of a global U(1) symmetry in a gapped system in(2+1)d. The gauging procedure has been well-understood for a finiteglobal symmetry group, which leads to a new gapped phase with emergentgauge structure and can be described algebraically using themathematical framework of modular tensor category (MTC). We develop acategorical description of U(1) gauging in a MTC, taking into accountthe dynamics of U(1) gauge field absent in the finite group case. Whenthe ungauged system has a non-zero Hall conductance, the gauged theoryremains gapped and we determine the complete set of anyon data for thegauged theory. On the other hand, when the Hall conductance vanishes, weargue that gauging has the same effect of condensing a special Abeliananyon nucleated by inserting 2\pi 2 π U(1) flux. We apply our procedure to theSU(2) _k k MTCs and derive the full MTC data for the \mathbb{Z}_k ℤ k parafermion MTCs. We also discuss a dual U(1) symmetry that emergesafter the original U(1) symmetry of an MTC is gauged.
more »
« less
This content will become publicly available on May 6, 2026
Tensor category describing anyons in the quantum Hall effect and quantization of conductance
In this study, we examine the quantization of Hall conductance in an infinite plane geometry. We consider a microscopic charge-conserving system with a pure, gapped infinite-volume ground state. While Hall conductance is well-defined in this scenario, existing proofs of its quantization have relied on assumptions of either weak interactions, or properties of finite volume ground state spaces, or invertibility. Here, we assume that the conditions necessary to construct the braided [Formula: see text]-tensor category which describes anyonic excitations are satisfied, and we demonstrate that the Hall conductance is rational if the tensor category is finite.
more »
« less
- Award ID(s):
- 2407290
- PAR ID:
- 10611459
- Publisher / Repository:
- World Scientific
- Date Published:
- Journal Name:
- Reviews in Mathematical Physics
- ISSN:
- 0129-055X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In this paper, we present a homotopical framework for studying invertible gapped phases of matter from the point of view of infinite spin lattice systems, using the framework of algebraic quantum mechanics. We define the notion of quantum state types. These are certain lax-monoidal functors from the category of finite-dimensional Hilbert spaces to the category of topological spaces. The universal example takes a finite-dimensional Hilbert space [Formula: see text] to the pure state space of the quasi-local algebra of the quantum spin system with Hilbert space [Formula: see text] at each site of a specified lattice. The lax-monoidal structure encodes the tensor product of states, which corresponds to stacking for quantum systems. We then explain how to formally extract parametrized phases of matter from quantum state types, and how they naturally give rise to [Formula: see text]-spaces for an operad we call the “multiplicative” linear isometry operad. We define the notion of invertible quantum state types and explain how the passage to phases for these is related to group completion. We also explain how invertible quantum state types give rise to loop-spectra. Our motivation is to provide a framework for constructing Kitaev’s loop-spectrum of bosonic invertible gapped phases of matter. Finally, as a first step toward understanding the homotopy types of the loop-spectra associated to invertible quantum state types, we prove that the pure state space of any UHF algebra is simply connected.more » « less
-
Abstract The thermal Hall effect recently provided intriguing probes to the ground state of exotic quantum matters. These observations of transverse thermal Hall signals lead to the debate on the fermionic versus bosonic origins of these phenomena. The recent report of quantum oscillations (QOs) in Kitaev spin liquid points to a possible resolution. The Landau level quantization would most likely capture only the fermionic thermal transport effect. However, the QOs in the thermal Hall effect are generally hard to detect. In this work, we report the observation of a large oscillatory thermal Hall effect of correlated Kagome metals. We detect a 180-degree phase change of the oscillation and demonstrate the phase flip as an essential feature for QOs in the thermal transport properties. More importantly, the QOs in the thermal Hall channel are more profound than those in the electrical Hall channel, which strongly violates the Wiedemann–Franz (WF) law for QOs. This result presents the oscillatory thermal Hall effect as a powerful probe to the correlated quantum materials.more » « less
-
A bstract Pure gravity in AdS 3 is a theory of boundary excitations, most simply expressed as a constrained free scalar with an improved stress tensor that is needed to match the Brown-Henneaux central charge. Excising a finite part of AdS gives rise to a static gauge Nambu-Goto action for the boundary graviton. We show that this is the $$ T\overline{T} $$ T T ¯ deformation of the infinite volume theory, as the effect of the improvement term on the deformed action can be absorbed into a field redefinition. The classical gravitational stress tensor is reproduced order by order by the $$ T\overline{T} $$ T T ¯ trace equation. We calculate the finite volume energy spectrum in static gauge and find that the trace equation imposes sufficient constraints on the ordering ambiguities to guarantee agreement with the light-cone gauge prediction. The correlation functions, however, are not completely fixed by the trace equation. We show how both the gravitational action and the $$ T\overline{T} $$ T T ¯ deformation allow for finite improvement terms, and we match these to the undetermined total derivative terms in Zamolodchikov’s point splitting definition of the $$ T\overline{T} $$ T T ¯ operator.more » « less
An official website of the United States government
