We report the first evidence for the transition with a significance of 3.5 standard deviations. The decay branching fraction is measured to be , which is noticeably smaller than expected. We also set upper limits on transitions of , and , at the 90% confidence level. These results are obtained with a data sample collected near the resonance with the Belle detector at the KEKB asymmetric-energy collider. Published by the American Physical Society2024
more »
« less
Scattering amplitudes in the Randall-Sundrum model with brane-localized curvature terms
In this paper we investigate the scattering amplitudes of spin-2 Kaluza-Klein (KK) states in Randall-Sundrum models with brane-localized curvature terms. We show that the presence of brane-localized curvature interactions modifies the properties of (4D) scalar fluctuations of the metric, resulting in scattering amplitudes of the massive spin-2 KK states which grow as instead of . We discuss the constraints on the size of the brane-localized curvature interactions based on the consistency of the Sturm-Liouville mode systems of the spin-2 and spin-0 metric fluctuations. We connect the properties of the scattering amplitudes to the diffeomorphism invariance of the compactified KK theory with brane-localized curvature interactions. We verify that the scattering amplitudes involving brane-localized external sources (matter) are diffeomorphism-invariant, but show that those for matter localized at an arbitrary point in the bulk are not. We demonstrate that, in Feynman gauge, the spin-0 Goldstone bosons corresponding to helicity-0 states of the massive spin-2 KK bosons behave as a tower of Galileons, and that it is their interactions that produce the high-energy behavior of the scattering amplitudes. We also outline the correspondence between our results and those in the Dvali-Gabadadze-Porrati model. In an Appendix we discuss the analogous issue in extra-dimensional gauge theory, and show that the presence of a brane-localized gauge kinetic-energy term does not change the high-energy behavior of corresponding KK vector boson scattering amplitudes. Published by the American Physical Society2024
more »
« less
- PAR ID:
- 10611460
- Publisher / Repository:
- American Physical Society
- Date Published:
- Journal Name:
- Physical Review D
- Volume:
- 110
- Issue:
- 9
- ISSN:
- 2470-0010
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The asymmetry and branching fraction of the Cabibbo-Kobayashi-Maskawa-suppressed decay are precisely measured relative to the favored decay using a sample of proton-proton collision data corresponding to an integrated luminosity of recorded at a center-of-mass energy of 13 TeV during 2016–2018. The results of the asymmetry difference and branching fraction ratio are , , where the first uncertainties are statistical and the second are systematic. A combination with previous LHCb results based on data collected at 7 and 8 TeV in 2011 and 2012 yields and . The combined value deviates from zero by 3.2 standard deviations, providing the first evidence for direct violation in the amplitudes of beauty decays to charmonium final states. © 2025 CERN, for the LHCb Collaboration2025CERNmore » « less
-
We report the results of the first search for Standard Model and baryon-number-violating two-body decays of the neutral mesons to and using of data collected at the resonance with the Belle detector at the KEKB asymmetric-energy collider. We observe no evidence of signal from any such decays and set 95% confidence-level upper limits on the products of and branching fractions for these two-body decays with in the range between and . Published by the American Physical Society2024more » « less
-
The decay chains are observed, and the spin-parity of baryons is determined for the first time. The measurement is performed using proton-proton collision data at a center-of-mass energy of , corresponding to an integrated luminosity of , recorded by the LHCb experiment between 2016 and 2018. The spin-parity of the baryons is determined to be with a significance of more than ( ) compared to all other tested hypotheses. The up-down asymmetries of the transitions are measured to be ( ), consistent with maximal parity violation, where the first uncertainty is statistical and the second is systematic. These results support the hypothesis that the baryons correspond to the first -wave -mode excitation of the flavor triplet. © 2025 CERN, for the LHCb Collaboration2025CERNmore » « less
-
A study is presented of and decays based on the analysis of proton-proton collision data collected with the LHCb detector at center-of-mass energies of 7, 8 and 13 TeV, corresponding to an integrated luminosity of . The invariant-mass distributions of both decay modes show, in the mass region, large activity which is resolved using an amplitude analysis. A simple model, where amplitudes are described by multiple Breit-Wigner functions with appropriate angular distributions, provides a good description of the experimental data. In this approach a complex mixture of , and amplitudes is observed that is dominated by , , , , and resonances. The Dalitz plots are dominated by asymmetric crossing bands which are different for the two decay modes. This is due to a different interference pattern between the and amplitudes in the two channels. Branching fractions are measured for each resonant contribution. © 2025 CERN, for the LHCb Collaboration2025CERNmore » « less
An official website of the United States government
