skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Remote sensing reveals inter‐ and intraspecific variation in riparian cottonwood (Populus) response to drought.
Abstract Understanding how vegetation responds to drought is fundamental for understanding the broader implications of climate change on foundation tree species that support high biodiversity. Leveraging remote sensing technology provides a unique vantage point to explore these responses across and within species.We investigated interspecific drought responses of twoPopulusspecies (P.fremontii,P.angustifolia) and their naturally occurring hybrids using leaf‐level visible through shortwave infrared (VSWIR; 400–2500 nm) reflectance. AsF1hybrids backcross with either species, resulting in a range of backcross genotypes, we heretofore refer to the two species and their hybrids collectively as ‘cross types’. We additionally explored intraspecific variation inP. fremontiidrought response at the leaf and canopy levels using reflectance data and thermal unmanned aerial vehicle (UAV) imagery. We employed several analyses to assess genotype‐by‐environment (G × E) interactions concerning drought, including principal component analysis, support vector machine and spectral similarity index.Five key findings emerged: (1) Spectra of all three cross types shifted significantly in response to drought. The magnitude of these reaction norms can be ranked from hybrids>P. fremontii>P. angustifolia, suggesting differential variation in response to drought; (2) Spectral space among cross types constricted under drought, indicating spectral—and phenotypic—convergence; (3) Experimentally, populations ofP. fremontiifrom cool regions had different responses to drought than populations from warm regions, with source population mean annual temperature driving the magnitude and direction of change in VSWIR reflectance. (4) UAV thermal imagery revealed that watered, warm‐adapted populations maintained lower leaf temperatures and retained more leaves than cool‐adapted populations, but differences in leaf retention decreased when droughted. (5) These findings are consistent with patterns of local adaptation to drought and temperature stress, demonstrating the ability of leaf spectra to detect ecological and evolutionary responses to drought as a function of adaptation to different environments.Synthesis.Leaf‐level spectroscopy and canopy‐level UAV thermal data captured inter‐ and intraspecific responses to water stress in cottonwoods, which are widely distributed in arid environments. This study demonstrates the potential of remote sensing to monitor and predict the impacts of drought on scales varying from leaves to landscapes.  more » « less
Award ID(s):
2017877 1340856 2017895
PAR ID:
10611504
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
British Ecological Society
Date Published:
Journal Name:
Journal of Ecology
ISSN:
0022-0477
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Atkin, Owen (Ed.)
    Summary Populus fremontiiis among the most dominant, and ecologically important riparian tree species in the western United States and can thrive in hyper‐arid riparian corridors. Yet,P. fremontiiforests have rapidly declined over the last decade, particularly in places where temperatures sometimes exceed 50°C.We evaluated high temperature tolerance of leaf metabolism, leaf thermoregulation, and leaf hydraulic function in eightP. fremontiipopulations spanning a 5.3°C mean annual temperature gradient in a well‐watered common garden, and at source locations throughout the lower Colorado River Basin.Two major results emerged. First, despite having an exceptionally highTcrit(the temperature at which Photosystem II is disrupted) relative to other tree taxa, recent heat waves exceededTcrit, requiring evaporative leaf cooling to maintain leaf‐to‐air thermal safety margins. Second, in midsummer, genotypes from the warmest locations maintained lower midday leaf temperatures, a higher midday stomatal conductance, and maintained turgor pressure at lower water potentials than genotypes from more temperate locations.Taken together, results suggest that under well‐watered conditions,P. fremontiican regulate leaf temperature belowTcritalong the warm edge of its distribution. Nevertheless, reduced Colorado River flows threaten to lower water tables below levels needed for evaporative cooling during episodic heat waves. 
    more » « less
  2. Abstract Plant traits are useful proxies of plant strategies and can influence community and ecosystem responses to climate extremes, such as severe drought. Few studies, however, have investigated both the immediate and lagged effects of drought on community‐weighted mean (CWM) plant traits, with even less research on the relative roles of interspecific vs. intraspecific trait variability in such responses.We experimentally reduced growing season precipitation by 66% in two cold‐semi‐arid grassland sites in northern China for four consecutive years to explore the drought resistance of CWM traits as well as their recovery 2 years following the drought. In addition, we isolated the effects of both interspecific and intraspecific trait variability on shifts in CWM traits.At both sites, we observed significant effects of drought on interspecific and intraspecific trait variability which, in some cases, led to significant changes in CWM traits. For example, drought led to reduced CWM plant height and leaf phosphorous content, but increased leaf carbon content at both sites, with responses primarily due to intraspecific trait shifts. Surprisingly, these CWM traits recovered completely 2 years after the extreme drought. Intraspecific trait variability influenced CWM traits via both positive and negative covariation with interspecific trait variability during drought and recovery phases.These findings highlight the important role of interspecific and intraspecific trait variability in driving the response and recovery of CWM traits following extreme, prolonged drought. Read the freePlain Language Summaryfor this article on the Journal blog. 
    more » « less
  3. Summary Reflectance spectroscopy is a rapid method for estimating traits and discriminating species. Spectral libraries from herbarium specimens represent an untapped resource for generating broad phenomic datasets across space, time, and taxa.We conducted a proof‐of‐concept study using trait data and spectra from herbarium specimens up to 179 yr old, alongside data from recently dried and pressed leaves. We validated model accuracy and transferability for trait prediction and taxonomic discrimination.Trait models from herbarium spectra predicted leaf mass per area (LMA) withR2 = 0.94 and %RMSE = 4.86%. Models for LMA prediction were transferable between herbarium and pressed spectra, achievingR2 = 0.88, %RMSE = 8.76% for herbarium to pressed spectra, andR2 = 0.76, %RMSE = 10.5% for the reverse transfer. Discriminant models classified leaf spectra from 25 species with 74% accuracy, and classification probabilities were significantly associated with several herbarium specimen quality metrics.The results validate herbarium spectral data for trait prediction and taxonomic discrimination, and demonstrate that trait modeling can benefit from the complementary use of pressed‐leaf and herbarium‐leaf spectral datasets. These promising advancements help to justify the spectral digitization of plant biodiversity collections and support their application in broad ecological and evolutionary investigations. 
    more » « less
  4. Summary Allocation of leaf phosphorus (P) among different functional fractions represents a crucial adaptive strategy for optimizing P use. However, it remains challenging to monitor the variability in leaf P fractions and, ultimately, to understand P‐use strategies across diverse plant communities.We explored relationships between five leaf P fractions (orthophosphate P, Pi; lipid P, PL; nucleic acid P, PN; metabolite P, PM; and residual P, PR) and 11 leaf economic traits of 58 woody species from three biomes in China, including temperate, subtropical and tropical forests. Then, we developed trait‐based models and spectral models for leaf P fractions and compared their predictive abilities.We found that plants exhibiting conservative strategies increased the proportions of PNand PM, but decreased the proportions of Piand PL, thus enhancing photosynthetic P‐use efficiency, especially under P limitation. Spectral models outperformed trait‐based models in predicting cross‐site leaf P fractions, regardless of concentrations (R2 = 0.50–0.88 vs 0.34–0.74) or proportions (R2 = 0.43–0.70 vs 0.06–0.45).These findings enhance our understanding of leaf P‐allocation strategies and highlight reflectance spectroscopy as a promising alternative for characterizing large‐scale leaf P fractions and plant P‐use strategies, which could ultimately improve the physiological representation of the plant P cycle in land surface models. 
    more » « less
  5. Abstract Imaging spectroscopy has the potential to map closely related plant taxa at landscape scales. Although spectral investigations at the leaf and canopy levels have revealed relationships between phylogeny and reflectance, understanding how spectra differ across, and are inherited from, genotypes of a single species has received less attention. We used a common-garden population of four varieties of the keystone canopy tree, Metrosideros polymorpha , from Hawaii Island and four F1-hybrid genotypes derived from controlled crosses to determine if reflectance spectra discriminate sympatric, conspecific varieties of this species and their hybrids. With a single exception, pairwise comparisons of leaf reflectance patterns successfully distinguished varieties of M. polymorpha on Hawaii Island as well as populations of the same variety from different islands. Further, spectral variability within a single variety from Hawaii Island and the older island of Oahu was greater than that observed among the four varieties on Hawaii Island. F1 hybrids most frequently displayed leaf spectral patterns intermediate to those of their parent taxa. Spectral reflectance patterns distinguished each of two of the hybrid genotypes from one of their parent varieties, indicating that classifying hybrids may be possible, particularly if sample sizes are increased. This work quantifies a baseline in spectral variability for an endemic Hawaiian tree species and advances the use of imaging spectroscopy in biodiversity studies at the genetic level. 
    more » « less