skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Oracle-Augmented Prophet Inequalities
In the classical prophet inequality setting, a gambler is given a sequence of n random variables X₁, … , X_n, taken from known distributions, observes their values in adversarial order and selects one of them, immediately after it is being observed, aiming to select a value that is as high as possible. The classical prophet inequality shows a strategy that guarantees a value at least half of the value of an omniscience prophet that always picks the maximum, and this ratio is optimal. Here, we generalize the prophet inequality, allowing the gambler some additional information about the future that is otherwise privy only to the prophet. Specifically, at any point in the process, the gambler is allowed to query an oracle 𝒪. The oracle responds with a single bit answer: YES if the current realization is greater than the remaining realizations, and NO otherwise. We show that the oracle model with m oracle calls is equivalent to the Top-1-of-(m+1) model when the objective is maximizing the probability of selecting the maximum. This equivalence fails to hold when the objective is maximizing the competitive ratio, but we still show that any algorithm for the oracle model implies an equivalent competitive ratio for the Top-1-of-(m+1) model. We resolve the oracle model for any m, giving tight lower and upper bound on the best possible competitive ratio compared to an almighty adversary. As a consequence, we provide new results as well as improvements on known results for the Top-1-of-m model.  more » « less
Award ID(s):
2317241
PAR ID:
10611582
Author(s) / Creator(s):
; ;
Editor(s):
Bringmann, Karl; Grohe, Martin; Puppis, Gabriele; Svensson, Ola
Publisher / Repository:
Schloss Dagstuhl – Leibniz-Zentrum für Informatik
Date Published:
Volume:
297
ISSN:
1868-8969
ISBN:
978-3-95977-322-5
Page Range / eLocation ID:
81:1-81:19
Subject(s) / Keyword(s):
prophet inequalities predictions top-1-of-k model Theory of computation → Algorithmic mechanism design
Format(s):
Medium: X Size: 19 pages; 1061452 bytes Other: application/pdf
Size(s):
19 pages 1061452 bytes
Right(s):
Creative Commons Attribution 4.0 International license; info:eu-repo/semantics/openAccess
Sponsoring Org:
National Science Foundation
More Like this
  1. Morin, Pat; Oh, Eunjin (Ed.)
    Let S be a set of n points in ℝ^d, where d ≥ 2 is a constant, and let H₁,H₂,…,H_{m+1} be a sequence of vertical hyperplanes that are sorted by their first coordinates, such that exactly n/m points of S are between any two successive hyperplanes. Let |A(S,m)| be the number of different closest pairs in the {(m+1) choose 2} vertical slabs that are bounded by H_i and H_j, over all 1 ≤ i < j ≤ m+1. We prove tight bounds for the largest possible value of |A(S,m)|, over all point sets of size n, and for all values of 1 ≤ m ≤ n. As a result of these bounds, we obtain, for any constant ε > 0, a data structure of size O(n), such that for any vertical query slab Q, the closest pair in the set Q ∩ S can be reported in O(n^{1/2+ε}) time. Prior to this work, no linear space data structure with sublinear query time was known. 
    more » « less
  2. null (Ed.)
    We consider the problem of selling perishable items to a stream of buyers in order to maximize social welfare. A seller starts with a set of identical items, and each arriving buyer wants any one item, and has a valuation drawn i.i.d. from a known distribution. Each item, however, disappears after an a priori unknown amount of time that we term the horizon for that item. The seller knows the (possibly different) distribution of the horizon for each item, but not its realization till the item actually disappears. As with the classic prophet inequalities, the goal is to design an online pricing scheme that competes with the prophet that knows the horizon and extracts full social surplus (or welfare). Our main results are for the setting where items have independent horizon distributions satisfying the monotone-hazard-rate (MHR) condition. Here, for any number of items, we achieve a constant-competitive bound via a conceptually simple policy that balances the rate at which buyers are accepted with the rate at which items are removed from the system. We implement this policy via a novel technique of matching via probabilistically simulating departures of the items at future times. Moreover, for a single item and MHR horizon distribution with mean, we show a tight result: There is a fixed pricing scheme that has competitive ratio at most 2 - 1/μ, and this is the best achievable in this class. We further show that our results are best possible. First, we show that the competitive ratio is unbounded without the MHR assumption even for one item. Further, even when the horizon distributions are i.i.d. MHR and the number of items becomes large, the competitive ratio of any policy is lower bounded by a constant greater than 1, which is in sharp contrast to the setting with identical deterministic horizons. 
    more » « less
  3. Kumar, Amit; Ron-Zewi, Noga (Ed.)
    We generalize the classical nuts and bolts problem to a setting where the input is a collection of n nuts and m bolts, and there is no promise of any matching pairs. It is not allowed to compare a nut directly with a nut or a bolt directly with a bolt, and the goal is to perform the fewest nut-bolt comparisons to discover the partial order between the nuts and bolts. We term this problem bipartite sorting. We show that instances of bipartite sorting of the same size exhibit a wide range of complexity, and propose to perform a fine-grained analysis for this problem. We rule out straightforward notions of instance-optimality as being too stringent, and adopt a neighborhood-based definition. Our definition may be of independent interest as a unifying lens for instance-optimal algorithms for other static problems existing in literature. This includes problems like sorting (Estivill-Castro and Woods, ACM Comput. Surv. 1992), convex hull (Afshani, Barbay and Chan, JACM 2017), adaptive joins (Demaine, López-Ortiz and Munro, SODA 2000), and the recent concept of universal optimality for graphs (Haeupler, Hladík, Rozhoň, Tarjan and Tětek, 2023). As our main result on bipartite sorting, we give a randomized algorithm that is within a factor of O(log³(n+m)) of being instance-optimal w.h.p., with respect to the neighborhood-based definition. As our second contribution, we generalize bipartite sorting to DAG sorting, when the underlying DAG is not necessarily bipartite. As an unexpected consequence of a simple algorithm for DAG sorting, we rule out a potential lower bound on the widely-studied problem of sorting with priced information, posed by (Charikar, Fagin, Guruswami, Kleinberg, Raghavan and Sahai, STOC 2000). In this problem, comparing keys i and j has a known cost c_{ij} ∈ ℝ^+ ∪ {∞}, and the goal is to sort the keys in an instance-optimal way, by keeping the total cost of an algorithm as close as possible to ∑_{i=1}^{n-1} c_{x(i)x(i+1)}. Here x(1) < ⋯ < x(n) is the sorted order. While several special cases of cost functions have received a lot of attention in the community, no progress on the general version with arbitrary costs has been reported so far. One reason for this lack of progress seems to be a widely-cited Ω(n) lower bound on the competitive ratio for finding the maximum. This Ω(n) lower bound by (Gupta and Kumar, FOCS 2000) uses costs in {0,1,n, ∞}, and although not extended to sorting, this barrier seems to have stalled any progress on the general cost case. We rule out such a potential lower bound by showing the existence of an algorithm with a Õ(n^{3/4}) competitive ratio for the {0,1,n,∞} cost version. This generalizes the setting of generalized sorting proposed by (Huang, Kannan and Khanna, FOCS 2011), where the costs are either 1 or infinity, and the cost of the cheapest proof is always n-1. 
    more » « less
  4. This paper studies distributed submodular optimization subject to partition matroid. We work in the value oracle model where the only access of the agents to the utility function is through a black box that returns the utility function value. The agents are communicating over a connected undirected graph and have access only to their own strategy set. As known in the literature, submodular maximization subject to matroid constraints is NP-hard. Hence, our objective is to propose a polynomial-time distributed algorithm to obtain a suboptimal solution with guarantees on the optimality bound. Our proposed algorithm is based on a distributed stochastic gradient ascent scheme built on the multilinear-extension of the submodular set function. We use a maximum consensus protocol to minimize the inconsistency of the shared information over the network caused by delay in the flow of information while solving for the fractional solution of the multilinear extension model. Furthermore, we propose a distributed framework of finding a set solution using the fractional solution. We show that our distributed algorithm results in a strategy set that when the team objective function is evaluated at worst case the objective function value is in 1−1/e−O(1/T) of the optimal solution in the value oracle model where T is the number of communication instances of the agents. An example demonstrates our results. 
    more » « less
  5. null (Ed.)
    We prove the existence of an oblivious routing scheme that is poly(logn)-competitive in terms of (congestion + dilation), thus resolving a well-known question in oblivious routing. Concretely, consider an undirected network and a set of packets each with its own source and destination. The objective is to choose a path for each packet, from its source to its destination, so as to minimize (congestion + dilation), defined as follows: The dilation is the maximum path hop-length, and the congestion is the maximum number of paths that include any single edge. The routing scheme obliviously and randomly selects a path for each packet independent of (the existence of) the other packets. Despite this obliviousness, the selected paths have (congestion + dilation) within a poly(logn) factor of the best possible value. More precisely, for any integer hop-bound h, this oblivious routing scheme selects paths of length at most h · poly(logn) and is poly(logn)-competitive in terms of congestion in comparison to the best possible congestion achievable via paths of length at most h hops. These paths can be sampled in polynomial time. This result can be viewed as an analogue of the celebrated oblivious routing results of R'acke [FOCS 2002, STOC 2008], which are O(logn)-competitive in terms of congestion, but are not competitive in terms of dilation. 
    more » « less