skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Predict and Match: Prophet Inequalities with Uncertain Supply
We consider the problem of selling perishable items to a stream of buyers in order to maximize social welfare. A seller starts with a set of identical items, and each arriving buyer wants any one item, and has a valuation drawn i.i.d. from a known distribution. Each item, however, disappears after an a priori unknown amount of time that we term the horizon for that item. The seller knows the (possibly different) distribution of the horizon for each item, but not its realization till the item actually disappears. As with the classic prophet inequalities, the goal is to design an online pricing scheme that competes with the prophet that knows the horizon and extracts full social surplus (or welfare). Our main results are for the setting where items have independent horizon distributions satisfying the monotone-hazard-rate (MHR) condition. Here, for any number of items, we achieve a constant-competitive bound via a conceptually simple policy that balances the rate at which buyers are accepted with the rate at which items are removed from the system. We implement this policy via a novel technique of matching via probabilistically simulating departures of the items at future times. Moreover, for a single item and MHR horizon distribution with mean, we show a tight result: There is a fixed pricing scheme that has competitive ratio at most 2 - 1/μ, and this is the best achievable in this class. We further show that our results are best possible. First, we show that the competitive ratio is unbounded without the MHR assumption even for one item. Further, even when the horizon distributions are i.i.d. MHR and the number of items becomes large, the competitive ratio of any policy is lower bounded by a constant greater than 1, which is in sharp contrast to the setting with identical deterministic horizons.  more » « less
Award ID(s):
1847393 1955997
PAR ID:
10240303
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of the ACM on Measurement and Analysis of Computing Systems
Volume:
4
Issue:
1
ISSN:
2476-1249
Page Range / eLocation ID:
1 to 23
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Large fractions of online advertisements are sold via repeated second-price auctions. In these auctions, the reserve price is the main tool for the auctioneer to boost revenues. In this work, we investigate the following question: how can the auctioneer optimize reserve prices by learning from the previous bids while accounting for the long-term incentives and strategic behavior of the bidders? To this end, we consider a seller who repeatedly sells ex ante identical items via a second-price auction. Buyers’ valuations for each item are drawn independently and identically from a distribution F that is unknown to the seller. We find that if the seller attempts to dynamically update a common reserve price based on the bidding history, this creates an incentive for buyers to shade their bids, which can hurt revenue. When there is more than one buyer, incentive compatibility can be restored by using personalized reserve prices, where the personal reserve price for each buyer is set using the historical bids of other buyers. Such a mechanism asymptotically achieves the expected revenue obtained under the static Myerson optimal auction for F. Further, if valuation distributions differ across bidders, the loss relative to the Myerson benchmark is only quadratic in the size of such differences. We extend our results to a contextual setting where the valuations of the buyers depend on observed features of the items. When up-front fees are permitted, we show how the seller can determine such payments based on the bids of others to obtain an approximately incentive-compatible mechanism that extracts nearly all the surplus. 
    more » « less
  2. In online sales, sellers usually offer each potential buyer a posted price in a take-it-or-leave fashion. Buyers can sometimes see posted prices faced by other buyers, and changing the price frequently could be considered unfair. The literature on posted-price mechanisms and prophet inequality problems has studied the two extremes of pricing policies, the fixed-price policy and fully dynamic pricing. The former is suboptimal in revenue but is perceived as fairer than the latter. This work examines the middle situation, where there are at most k distinct prices over the selling horizon. Using the framework of prophet inequalities with independent and identically distributed random variables, we propose a new prophet inequality for strategies that use at most k thresholds. We present asymptotic results in k and results for small values of k. For k = 2 prices, we show an improvement of at least 11% over the best fixed-price solution. Moreover, k = 5 prices suffice to guarantee almost 99% of the approximation factor obtained by a fully dynamic policy that uses an arbitrary number of prices. From a technical standpoint, we use an infinite-dimensional linear program in our analysis; this formulation could be of independent interest to other online selection problems. 
    more » « less
  3. Meka, Raghu (Ed.)
    {"Abstract":["We investigate prophet inequalities with competitive ratios approaching 1, seeking to generalize k-uniform matroids. We first show that large girth does not suffice: for all k, there exists a matroid of girth ≥ k and a prophet inequality instance on that matroid whose optimal competitive ratio is 1/2. Next, we show k-fold matroid unions do suffice: we provide a prophet inequality with competitive ratio 1-O(√{(log k)/k}) for any k-fold matroid union. Our prophet inequality follows from an online contention resolution scheme.\r\nThe key technical ingredient in our online contention resolution scheme is a novel bicriterion concentration inequality for arbitrary monotone 1-Lipschitz functions over independent items which may be of independent interest. Applied to our particular setting, our bicriterion concentration inequality yields "Chernoff-strength" concentration for a 1-Lipschitz function that is not (approximately) self-bounding."]} 
    more » « less
  4. Vidick, T. (Ed.)
    We study auctions for carbon licenses, a policy tool used to control the social cost of pollution. Each identical license grants the right to produce a unit of pollution. Each buyer (i.e., firm that pollutes during the manufacturing process) enjoys a decreasing marginal value for licenses, but society suffers an increasing marginal cost for each license distributed. The seller (i.e., the government) can choose a number of licenses to put up for auction, and wishes to maximize the societal welfare: the total economic value of the buyers minus the social cost. Motivated by emission license markets deployed in practice, we focus on uniform price auctions with a price floor and/or price ceiling. The seller has distributional information about the market, and their goal is to tune the auction parameters to maximize expected welfare. The target benchmark is the maximum expected welfare achievable by any such auction under truth-telling behavior. Unfortunately, the uniform price auction is not truthful, and strategic behavior can significantly reduce (even below zero) the welfare of a given auction configuration. We describe a subclass of “safe-price” auctions for which the welfare at any Bayes-Nash equilibrium will approximate the welfare under truth-telling behavior. We then show that the better of a safeprice auction, or a truthful auction that allocates licenses to only a single buyer, will approximate the target benchmark. In particular, we show how to choose a number of licenses and a price floor so that the worst-case welfare, at any equilibrium, is a constant approximation to the best achievable welfare under truth-telling after excluding the welfare contribution of a single buyer. 
    more » « less
  5. We study the revenue guarantees and approximability of item pricing. Recent work shows that with n heterogeneous items, item-pricing guarantees an O(logn) approximation to the optimal revenue achievable by any (buy-many) mechanism, even when buyers have arbitrarily combinatorial valuations. However, finding good item prices is challenging – it is known that even under unit-demand valuations, it is NP-hard to find item prices that approximate the revenue of the optimal item pricing better than O(√n). Our work provides a more fine-grained analysis of the revenue guarantees and computational complexity in terms of the number of item “categories” which may be significantly fewer than n. We assume the items are partitioned in k categories so that items within a category are totally-ordered and a buyer’s value for a bundle depends only on the best item contained from every category. We show that item-pricing guarantees an O(logk) approximation to the optimal (buy-many) revenue and provide a PTAS for computing the optimal item-pricing when k is constant. We also provide a matching lower bound showing that the problem is (strongly) NP-hard even when k=1. Our results naturally extend to the case where items are only partially ordered, in which case the revenue guarantees and computational complexity depend on the width of the partial ordering, i.e. the largest set for which no two items are comparable. 
    more » « less